Solveeit Logo

Question

Question: If **a**, **b**, **c**, **d** be the position vectors of the points A, B, C and D respectively refer...

If a, b, c, d be the position vectors of the points A, B, C and D respectively referred to same origin O such that no three of these points are collinear and xij+2k\mathbf{x}\mathbf{i}\mathbf{-}\mathbf{j + 2k} then quadrilateral ABCD is a

A

Square

B

Rhombus

C

Rectangle

D

Parallelogram

Answer

Parallelogram

Explanation

Solution

Given a+c=b+d12(a+c)=12(b+d)\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d} \Rightarrow \frac{1}{2}(\mathbf{a} + \mathbf{c}) = \frac{1}{2}(\mathbf{b} + \mathbf{d})

Here, mid points of AC\overset{\rightarrow}{AC} and BD\overset{\rightarrow}{BD} coincide, where AC\overset{\rightarrow}{AC} and BD\overset{\rightarrow}{BD} are diagonals. In addition, we know that diagonals of a parallelogram bisect each other.

Hence quadrilateral is parallelogram.