Solveeit Logo

Question

Question: If A, B, C, D are the angles of a cyclic quadrilateral, then \(\cos A + \cos B + \cos{}C + \cos D =\...

If A, B, C, D are the angles of a cyclic quadrilateral, then cosA+cosB+cosC+cosD=\cos A + \cos B + \cos{}C + \cos D =

A

2(cosA+cosC)2(\cos A + \cos C)

B

2(cosA+cosB)2(\cos A + \cos B)

C

2(cosA+cosD)2(\cos A + \cos D)

D

0

Answer

0

Explanation

Solution

Given that ABCD is a cyclic quadrilateral.

So A+C=180A=180CA + C = 180{^\circ} \Rightarrow A = 180{^\circ} - C

cosA=cos(180C)=cosC\Rightarrow \cos A = \cos(180{^\circ} - C) = - \cos C

cosA+cosC=0\Rightarrow \cos A + \cos C = 0 .....(i)

Similarly, cosB+cosD=0\cos B + \cos D = 0 .....(ii)

Adding, cosA+cosB+cosC+cosD=0.\cos A + \cos B + \cos C + \cos D = 0.