Question
Question: If A, B, C, D are the angles of a cyclic quadrilateral, then \(\cos A + \cos B + \cos{}C + \cos D =\...
If A, B, C, D are the angles of a cyclic quadrilateral, then cosA+cosB+cosC+cosD=
A
2(cosA+cosC)
B
2(cosA+cosB)
C
2(cosA+cosD)
D
0
Answer
0
Explanation
Solution
Given that ABCD is a cyclic quadrilateral.
So A+C=180∘⇒A=180∘−C
⇒cosA=cos(180∘−C)=−cosC
⇒cosA+cosC=0 .....(i)
Similarly, cosB+cosD=0 .....(ii)
Adding, cosA+cosB+cosC+cosD=0.