Solveeit Logo

Question

Question: If a, b, c, d are positive, then \(\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{a + bx} \right)^{c...

If a, b, c, d are positive, then limx(1+1a+bx)c+dx\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{a + bx} \right)^{c + dx}

A

ed/be^{d/b}

B

ec/ae^{c/a}

C

e(c+d)/(a+b)e^{(c + d)/(a + b)}

D

e

Answer

ed/be^{d/b}

Explanation

Solution

limx(1+1a+bx)c+dx=limx{(1+1a+bx)a+bx}c+dxa+bx\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{a + bx} \right)^{c + dx} = \lim_{x \rightarrow \infty}\left\{ \left( 1 + \frac{1}{a + bx} \right)^{a + bx} \right\}^{\frac{c + dx}{a + bx}}

= ed/b{limx(1+1a+bx)a+bx=e e^{d/b}\left\{ \because\lim_{x \rightarrow \infty}\left( 1 + \frac{1}{a + bx} \right)^{a + bx} = e \right.\ and  limxc+dxa+bx=db}\left. \ \lim_{x \rightarrow \infty}\frac{c + dx}{a + bx} = \frac{d}{b} \right\}

Alternative method : elimx(1a+bx)(c+dx1)=ed/be^{\lim_{x \rightarrow \infty}\left( \frac{1}{a + bx} \right)\left( \frac{c + dx}{1} \right)} = e^{d/b}.