Solveeit Logo

Question

Question: If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisf...

If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b) (c + d) satisfies the relation

A

0 ≤ M ≤ 1

B

1 ≤ M ≤ 2

C

2 ≤ M ≤ 3

D

3 ≤ M ≤ 4

Answer

3 ≤ M ≤ 4

Explanation

Solution

3 ≤ M ≤ 4

As A.M. ≥ G.M. for positive real numbers, we get

(a+b)+(c+d)2(a+b)(c+d)\frac { ( \mathrm { a } + \mathrm { b } ) + ( \mathrm { c } + \mathrm { d } ) } { 2 } \geq \sqrt { ( \mathrm { a } + \mathrm { b } ) ( \mathrm { c } + \mathrm { d } ) } ⇒ M ≤ I

(Putting values)

Also(a + b) (c + d) > 0

[... a, b, c, d > 0]

∴0 ≤ M ≤ 1