Question
Mathematics Question on Sequence and series
If a,b,c,d are positive real numbers such that a+b+c+d=2, then M=(a+b)(c+d) satisfies the relation.
A
0<M≤1
B
1<M≤2
C
2≤M≤3
D
3≤M≤4
Answer
0<M≤1
Explanation
Solution
Since, AM≥GM, then
\hspace15mm \frac{(a + b) + (c + d)}{2} \ge \sqrt {(a+ b)\, (c+d)} \Rightarrow M \le 1
Also, \hspace5mm (a + b) + (c +d) > 0 \hspace15mm [\because a, b, c, d > 0]
\therefore \hspace30mm 0 < M \le 1