Solveeit Logo

Question

Mathematics Question on Sequence and series

If a,b,c,da, b, c, d are positive real numbers such that a+b+c+d=2,a + b +c + d = 2, then M=(a+b)(c+d)M =(a + b) (c+d) satisfies the relation.

A

0<M1 0 < M \le 1

B

1<M2 1 < M \le 2

C

2M32 \le\, M \le 3

D

3M43 \le\, M \le 4

Answer

0<M1 0 < M \le 1

Explanation

Solution

Since, AMGM AM \ge GM, then
\hspace15mm \frac{(a + b) + (c + d)}{2} \ge \sqrt {(a+ b)\, (c+d)} \Rightarrow M \le 1
Also, \hspace5mm (a + b) + (c +d) > 0 \hspace15mm [\because a, b, c, d > 0]
\therefore \hspace30mm 0 < M \le 1