Solveeit Logo

Question

Question: If \[a,b,c,d\] are four vectors then the value of \[\left( {a \times b} \right) \times \left( {c \ti...

If a,b,c,da,b,c,d are four vectors then the value of (a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right) is ___________

Explanation

Solution

In this problem, use the two formulas of the vector product of four vectors and then convert and simplify further by cancelation of the common terms to get the required value of the given problem.

Complete step-by-step answer :
Given that a,b,c,da,b,c,d are four vectors.
We have to find the value of (a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)
We know that (a×b)×(c×d)=[a b d]c[a b c]d\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d
Let v=(a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)v = \left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right). By using the above formula, we have
v=[a b d]c[a b c]d+(a×c)×(d×b)+(a×d)×(b×c) [(a×b)×(c×d)=[a b d]c[a b c]d]\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d} \right]
Also, we know that (a×b)×(c×d)=[a c d]b[b c d]a\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a
v=[a b d]c[a b c]d+[a d b]c[c d b]a+(a×d)×(b×c) [(a×b)×(c×d)=[a c d]b[b c d]a]\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]
Again, using the formula (a×b)×(c×d)=[a c d]b[b c d]a\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a we get
v=[a b d]c[a b c]d+[a d b]c[c d b]a+[a b c]d[d b c]a [(a×b)×(c×d)=[a c d]b[b c d]a]\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left[ {a{\text{ }}b{\text{ }}c} \right]d - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]
Cancelling the common terms, we have

v=[a b d]c+[a d b]c[c d b]a[d b c]a v=[a b d]c[a b d]c[c d b]a[d b c]a [[a b c]d=[a c b]d] v=[c d b]a[d b c]a v=[c d b]a[c d b]a  [[a b c]d=[c a b]d] v=2[c d b]a v=2[b c d]a [[a b c]d=[c b a]d]  \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\\ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d} \right] \\\ \Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\\ \Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {c{\text{ }}d{\text{ }}b} \right]a{\text{ }}\,{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = \left[ {c{\text{ }}a{\text{ }}b} \right]d} \right] \\\ \Rightarrow v = - 2\left[ {c{\text{ }}d{\text{ }}b} \right]a \\\ \therefore v = 2\left[ {b{\text{ }}c{\text{ }}d} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d} \right] \\\

Thus, the value of (a×b)×(c×d)+(a×c)×(d×b)+(a×d)×(b×c)\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right) is 2[b c d]a2\left[ {b{\text{ }}c{\text{ }}d} \right]a.

Note : Here we have to remember the formulae
1. (a×b)×(c×d)=[a c d]b[b c d]a\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a
2. (a×b)×(c×d)=[a b d]c[a b c]d\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d
3. [a b c]d=[a c b]d\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d
4. [a b c]d=[c b a]d\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d