Solveeit Logo

Question

Question: If A, B, C, D are four distinct points in space such that \(\overset{\rightarrow}{AB}\) is not perpe...

If A, B, C, D are four distinct points in space such that AB\overset{\rightarrow}{AB} is not perpendicular to CD\overset{\rightarrow}{CD}and satisfies AB\overset{\rightarrow}{AB}.CD\overset{\rightarrow}{CD} = k (|AD\overset{\rightarrow}{AD}|2 + |BC\overset{\rightarrow}{BC}|2 – |AC\overset{\rightarrow}{AC}|2 – |BD\overset{\rightarrow}{BD}|2) then the value of k is –

A

2

B

1/3

C

½

D

1

Answer

1

Explanation

Solution

Let A is origin and position vectors of B, C and D are b,c,d\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}

AB\overset{\rightarrow}{AB}.CD\overset{\rightarrow}{CD} = k(|AD\overset{\rightarrow}{AD}|2 + |BC\overset{\rightarrow}{BC}|2 – |AC\overset{\rightarrow}{AC}|2 – |BD\overset{\rightarrow}{BD}|2)

̃ (b\overrightarrow{b}).(d\overrightarrow{d}c\overrightarrow{c}) = k ((d\overrightarrow{d})2 + (c\overrightarrow{c}b\overrightarrow{b})2 – (c\overrightarrow{c})2

– (d\overrightarrow{d}b\overrightarrow{b})2) k = ½