Solveeit Logo

Question

Question: If **a**, **b**, **c**, **d** are coplanar vectors, then \((\mathbf{a} \times \mathbf{b}) \times (\m...

If a, b, c, d are coplanar vectors, then (a×b)×(c×d)=(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) =

A

a×c2|\mathbf{a} \times \mathbf{c}|^{2}

B

a×d2|\mathbf{a} \times \mathbf{d}|^{2}

C

b×c2|\mathbf{b} \times \mathbf{c}|^{2}

D

0

Answer

0

Explanation

Solution

(a×b)×(c×d)=[abd]c[abc]d(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \lbrack\mathbf{abd}\rbrack\mathbf{c} - \lbrack\mathbf{abc}\rbrack\mathbf{d}

a,b,c,d\because\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d} are coplanar vectors

[abd]=[abc]=0.\therefore\lbrack\mathbf{abd}\rbrack = \lbrack\mathbf{abc}\rbrack = 0. So, (a×b)×(c×d)=0(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \mathbf{0}.