Solveeit Logo

Question

Question: If A, B, C, D are any four points in space, then \(| \overrightarrow { A B } \times \overrightarrow ...

If A, B, C, D are any four points in space, then AB×CD+BC×AD+CA×BD| \overrightarrow { A B } \times \overrightarrow { C D } + \overrightarrow { B C } \times \overrightarrow { A D } + \overrightarrow { C A } \times \overrightarrow { B D } | is equal to

A

2Δ2 \Delta

B

4Δ4 \Delta

C

3Δ3 \Delta

D

(where ∆ denotes the area of ABC\triangle A B C )

Answer

4Δ4 \Delta

Explanation

Solution

Let AA be the origin and let the poisition vectors of B,CB , C and DD be b,c\mathbf { b } , \mathbf { c } and d respectively.

Then AB=b\overrightarrow { A B } = \mathbf { b } CD=dc\overrightarrow { C D } = \mathbf { d } - \mathbf { c } BC=cb\overrightarrow { B C } = \mathbf { c } - \mathbf { b } AD=d\overrightarrow { A D } = \mathbf { d } CA=c\overrightarrow { C A } = - \mathbf { c } and BD=db\overrightarrow { B D } = \mathbf { d } - \mathbf { b }

AB×CD+BC×AD+CA×BD\therefore | \overrightarrow { A B } \times \overrightarrow { C D } + \overrightarrow { B C } \times \overrightarrow { A D } + \overrightarrow { C A } \times \overrightarrow { B D } |

=b×(dc)+(cb)×dc×(db)= | \mathbf { b } \times ( \mathbf { d } - \mathbf { c } ) + ( \mathbf { c } - \mathbf { b } ) \times \mathbf { d } - \mathbf { c } \times ( \mathbf { d } - \mathbf { b } ) |

=b×db×c+c×db×dc×d+c×b= | \mathbf { b } \times \mathbf { d } - \mathbf { b } \times \mathbf { c } + \mathbf { c } \times \mathbf { d } - \mathbf { b } \times \mathbf { d } - \mathbf { c } \times \mathbf { d } + \mathbf { c } \times \mathbf { b } |

=4= 4(area of triangle