Solveeit Logo

Question

Question: If a, b, c, d and p are different real numbers such that (a<sup>2</sup> + b<sup>2</sup> + c<sup>2</s...

If a, b, c, d and p are different real numbers such that (a2 + b2 + c2) p2 – 2 (ab + bc + cd) p + (b2 + c2 + d2) £ 0, then a, b, c, d are in –

A

A.P.

B

G.P.

C

H.P.

D

ab = cd

Answer

G.P.

Explanation

Solution

We have

(a2 + b2 + c2) p2 – 2 (ab + bc + cd) p + (b2 + c2 + d2) £ 0 …(i)

LHS = (a2p2 – 2abp + b2) + (b2p2 – 2bcp + c2) +

(c2p2 – 2cdp + d2)

= (ap – b)2 + (bp – c)2 + (cp – d)2 ³ 0 …(ii)

Since, the sum of squares of real number is non-negative

From Equations (i) and (ii)

̃ (ap – b)2 + (bp – c)2 + (cp – d)2 = 0

̃ ap – b = 0 = bp – c = cp – d

̃ ba=cb=dc=p\frac { \mathrm { b } } { \mathrm { a } } = \frac { \mathrm { c } } { \mathrm { b } } = \frac { \mathrm { d } } { \mathrm { c } } = \mathrm { p }

\ a, b, c, d are in G.P.