Solveeit Logo

Question

Question: If A, B, C be the angles of a triangle, then \(\left| \begin{matrix} - 1 & \cos C & \cos B \\ \cos ...

If A, B, C be the angles of a triangle, then $\left| \begin{matrix}

  • 1 & \cos C & \cos B \ \cos C & - 1 & \cos A \ \cos B & \cos A & - 1 \end{matrix} \right| =$
A

1

B

0

C

cosAcosBcosC\cos A\cos B\cos C

D

cosA+cosBcosC\cos A + \cos B\cos C

Answer

0

Explanation

Solution

Given, Angles of a triangle = A, B and C. We know that as

A + B + C = π, therefore A+B=πCA + B = \pi - C

or cos(A+B)=cos(πC)=cosC\cos(A + B) = \cos(\pi - C) = - \cos C

or cosAcosBsinAsinB=cosC\cos A\cos B - \sin A\sin B = - \cos C

cosAcosB+cosC=sinAsinB\cos A\cos B + \cos C = \sin A\sin B

and sin(A+B)=sin(πC)=sinC.\sin(A + B) = \sin(\pi - C) = \sin C.

Expanding the given determinant, we get

Δ=(1cos2A)+cosC(cosC+cosAcosB)+cosB(cosB+cosAcosC)\Delta = - (1 - \cos^{2}A) + \cos C(\cos C + \cos A\cos B) + \cos B(\cos B + \cos A\cos C)

=sin2A+cosC(sinAsinB)+cosB(sinAsinC)= - \sin^{2}A + \cos C(\sin A\sin B) + \cos B(\sin A\sin C)

=sin2A+sinA(sinBcosC+cosBsinC)= - \sin^{2}A + \sin A(\sin B\cos C + \cos B\sin C)

=sin2A+sinAsin(B+C)=sin2A+sin2A=0.= - \sin^{2}A + \sin A\sin(B + C) = - \sin^{2}A + \sin^{2}A = 0.