Question
Question: If A, B, C be the angles of a triangle, then \(\left| \begin{matrix} - 1 & \cos C & \cos B \\ \cos ...
If A, B, C be the angles of a triangle, then $\left| \begin{matrix}
- 1 & \cos C & \cos B \ \cos C & - 1 & \cos A \ \cos B & \cos A & - 1 \end{matrix} \right| =$
A
1
B
0
C
cosAcosBcosC
D
cosA+cosBcosC
Answer
0
Explanation
Solution
Given, Angles of a triangle = A, B and C. We know that as
A + B + C = π, therefore A+B=π−C
or cos(A+B)=cos(π−C)=−cosC
or cosAcosB−sinAsinB=−cosC
cosAcosB+cosC=sinAsinB
and sin(A+B)=sin(π−C)=sinC.
Expanding the given determinant, we get
Δ=−(1−cos2A)+cosC(cosC+cosAcosB)+cosB(cosB+cosAcosC)
=−sin2A+cosC(sinAsinB)+cosB(sinAsinC)
=−sin2A+sinA(sinBcosC+cosBsinC)
=−sin2A+sinAsin(B+C)=−sin2A+sin2A=0.