Question
Question: If a, b, c be positive real numbers and the value of \(\theta = \tan^{- 1}\sqrt{\frac{a(a + b + c)}...
If a, b, c be positive real numbers and the value of
θ=tan−1bca(a+b+c)+tan−1cab(a+b+c)+tan−1abc(a+b+c), then tanθ is
A
0
B
1
C
a+b+c
D
None of these
Answer
0
Explanation
Solution
θ=tan−1bca(a+b+c)+tan−1cab(a+b+c)+tan−1abc(a+b+c)
Let s2=abca+b+c
∴ θ=tan−1a2s2+tan−1b2s2+tan−1c2s2
⇒θ=tan−1(as)+tan−1(bs)+tan−1(cs) ⇒ θ=tan−1[1−abs2−bcs2−cas2as+bs+cs−abcs3] ⇒ tanθ=s[1−(ab+bc+ca)s2(a+b+c)−abcs2]=0[∵abcs2=(a+b+c)]
Trick : Since it is an identity so it will be true for any value of a,b,c. Let a=b=c=1 then
θ=tan−13+tan−13+tan−13=π tanθ=0