Solveeit Logo

Question

Question: If a, b, c be positive real numbers and the value of \(\theta = \tan^{- 1}\sqrt{\frac{a(a + b + c)}...

If a, b, c be positive real numbers and the value of

θ=tan1a(a+b+c)bc+tan1b(a+b+c)ca+tan1c(a+b+c)ab\theta = \tan^{- 1}\sqrt{\frac{a(a + b + c)}{bc}} + \tan^{- 1}\sqrt{\frac{b(a + b + c)}{ca}} + \tan^{- 1}\sqrt{\frac{c(a + b + c)}{ab}}, then tanθ\tan\theta is

A

0

B

1

C

a+b+ca + b + c

D

None of these

Answer

0

Explanation

Solution

θ=tan1a(a+b+c)bc+tan1b(a+b+c)ca+tan1c(a+b+c)ab\theta = \tan^{- 1}\sqrt{\frac{a(a + b + c)}{bc}} + \tan^{- 1}\sqrt{\frac{b(a + b + c)}{ca}} + \tan^{- 1}\sqrt{\frac{c(a + b + c)}{ab}}

Let s2=a+b+cabcs^{2} = \frac{a + b + c}{abc}

θ=tan1a2s2+tan1b2s2+tan1c2s2\theta = \tan^{- 1}\sqrt{a^{2}s^{2}} + \tan^{- 1}\sqrt{b^{2}s^{2}} + \tan^{- 1}\sqrt{c^{2}s^{2}}

θ=tan1(as)+tan1(bs)+tan1(cs)\Rightarrow \theta = \tan^{- 1}(as) + \tan^{- 1}(bs) + \tan^{- 1}(cs)θ=tan1[as+bs+csabcs31abs2bcs2cas2]\theta = \tan^{- 1}\left\lbrack \frac{as + bs + cs - abcs^{3}}{1 - abs^{2} - bcs^{2} - cas^{2}} \right\rbrack \Rightarrow tanθ=s[(a+b+c)abcs21(ab+bc+ca)s2]=0[abcs2=(a+b+c)]\tan\theta = s\left\lbrack \frac{(a + b + c) - abcs^{2}}{1 - (ab + bc + ca)s^{2}} \right\rbrack = 0\lbrack\because abcs^{2} = (a + b + c)\rbrack

Trick : Since it is an identity so it will be true for any value of a,b,c. Let a=b=c=1a = b = c = 1 then

θ=tan13+tan13+tan13=π\theta = \tan ^ { - 1 } \sqrt { 3 } + \tan ^ { - 1 } \sqrt { 3 } + \tan ^ { - 1 } \sqrt { 3 } = \pi tanθ=0\tan\theta = 0