Solveeit Logo

Question

Question: If **a, b, c** are unit vectors such that \(\mathbf { a } + \mathbf { b } + \mathbf { c } = \mathbf ...

If a, b, c are unit vectors such that a+b+c=0\mathbf { a } + \mathbf { b } + \mathbf { c } = \mathbf { 0 } then ab+bc+ca=\mathbf { a } \cdot \mathbf { b } + \mathbf { b } \cdot \mathbf { c } + \mathbf { c } \cdot \mathbf { a } =

A

1

B

3

C

– 3/2

D

3/2

Answer

– 3/2

Explanation

Solution

Squaring (a+b+c)=0( \mathbf { a } + \mathbf { b } + \mathbf { c } ) = \mathbf { 0 }

we get a2+b2+c2+2ab+2bc+2ca=0\mathbf { a } ^ { 2 } + \mathbf { b } ^ { 2 } + \mathbf { c } ^ { 2 } + 2 \mathbf { a } \cdot \mathbf { b } + 2 \mathbf { b } \cdot \mathbf { c } + 2 \mathbf { c } \cdot \mathbf { a } = 0

.