Solveeit Logo

Question

Question: If **a**, **b**, **c** are three vectors such that \(\mathbf{a} = \mathbf{b} + \mathbf{c}\) and the ...

If a, b, c are three vectors such that a=b+c\mathbf{a} = \mathbf{b} + \mathbf{c} and the angle between b and c is π/2,\pi/2, then

A

a2=b2+c2a^{2} = b^{2} + c^{2}

B

b2=c2+a2b^{2} = c^{2} + a^{2}

C

c2=a2+b2c^{2} = a^{2} + b^{2}

D

2a2b2=c22a^{2} - b^{2} = c^{2}

(Note : Here a=a,b=b,c=c)a = |\mathbf{a}|,b = |\mathbf{b}|,c = |\mathbf{c}|)

Answer

a2=b2+c2a^{2} = b^{2} + c^{2}

Explanation

Solution

Given that a×b=c\Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{c} and angle between b and c is π2\frac{\pi}{2}.

So, a2=b2+c2+2b.c\mathbf{a}^{2} = \mathbf{b}^{2} + \mathbf{c}^{2} + 2\mathbf{b}.\mathbf{c}

or a2=b2+c2+2bccosπ2\mathbf{a}^{\mathbf{2}}\mathbf{=}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}\mathbf{+ 2|b||c|}\mathbf{\cos}\frac{\mathbf{\pi}}{\mathbf{2}}

or a2=b2+c2+0,a2=b2+c2\mathbf{a}^{\mathbf{2}}\mathbf{=}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}\mathbf{+ 0,}\mathbf{\therefore}\mathbf{a}^{\mathbf{2}}\mathbf{=}\mathbf{b}^{\mathbf{2}}\mathbf{+}\mathbf{c}^{\mathbf{2}}

i.e., a2=b2+c2a^{2} = b^{2} + c^{2}.