Question
Question: If A, B, C are three matrices of order 2, such that $\qquad |A + B|- |C| = -10,$ $\qquad |B + C| - |...
If A, B, C are three matrices of order 2, such that ∣A+B∣−∣C∣=−10, ∣B+C∣−∣A∣=25, ∣C+A∣−∣B∣=15,
then the value of ∣A+B+C∣ is equal to (∣A∣ denotes the determinant of matrix A)

15
30
45
60
30
Solution
Let A,B,C be three matrices of order 2. Let ∣M∣ denote the determinant of a matrix M. For two matrices M and N of order 2, we have the property: ∣M+N∣=∣M∣+∣N∣+det(rM1rN2)+det(rN1rM2), where rM1,rM2 are the first and second rows of M, and rN1,rN2 are the first and second rows of N.
Let X=∣A∣, Y=∣B∣, Z=∣C∣. Let dAB=det(rA1rB2)+det(rB1rA2). Let dBC=det(rB1rC2)+det(rC1rB2). Let dCA=det(rC1rA2)+det(rA1rC2).
The given equations are:
- ∣A+B∣−∣C∣=−10⟹∣A∣+∣B∣+dAB−∣C∣=−10⟹X+Y+dAB−Z=−10
- ∣B+C∣−∣A∣=25⟹∣B∣+∣C∣+dBC−∣A∣=25⟹Y+Z+dBC−X=25
- ∣C+A∣−∣B∣=15⟹∣C∣+∣A∣+dCA−∣B∣=15⟹Z+X+dCA−Y=15
Adding the three equations: (X+Y+dAB−Z)+(Y+Z+dBC−X)+(Z+X+dCA−Y)=−10+25+15 (X−X+X)+(Y+Y−Y)+(−Z+Z+Z)+dAB+dBC+dCA=30 X+Y+Z+dAB+dBC+dCA=30.
Now consider ∣A+B+C∣. A+B+C=(rA1+rB1+rC1rA2+rB2+rC2). Using the multilinearity property of the determinant with respect to rows: ∣A+B+C∣=det(rA1+rB1+rC1rA2+rB2+rC2) =det(rA1rA2+rB2+rC2)+det(rB1rA2+rB2+rC2)+det(rC1rA2+rB2+rC2) =det(rA1rA2)+det(rA1rB2)+det(rA1rC2)+det(rB1rA2)+det(rB1rB2)+det(rB1rC2)+det(rC1rA2)+det(rC1rB2)+det(rC1rC2) =∣A∣+det(rA1rB2)+det(rA1rC2)+det(rB1rA2)+∣B∣+det(rB1rC2)+det(rC1rA2)+det(rC1rB2)+∣C∣ Rearranging the terms: ∣A+B+C∣=∣A∣+∣B∣+∣C∣+(det(rA1rB2)+det(rB1rA2))+(det(rB1rC2)+det(rC1rB2))+(det(rC1rA2)+det(rA1rC2)) ∣A+B+C∣=X+Y+Z+dAB+dBC+dCA.
Comparing this expression with the sum of the given equations, we see that: ∣A+B+C∣=(X+Y+Z+dAB+dBC+dCA)=30.
The value of ∣A+B+C∣ is 30.