Solveeit Logo

Question

Question: If A, B, C are three matrices of order 2, such that $\qquad |A + B|- |C| = -10,$ $\qquad |B + C| - |...

If A, B, C are three matrices of order 2, such that A+BC=10,\qquad |A + B|- |C| = -10, B+CA=25,\qquad |B + C| - |A| = 25, C+AB=15,\qquad |C + A| - |B| = 15,

then the value of A+B+C|A + B + C| is equal to (A|A| denotes the determinant of matrix A)

A

15

B

30

C

45

D

60

Answer

30

Explanation

Solution

Let A,B,CA, B, C be three matrices of order 2. Let M|M| denote the determinant of a matrix MM. For two matrices MM and NN of order 2, we have the property: M+N=M+N+det(rM1rN2)+det(rN1rM2)|M+N| = |M| + |N| + \det \begin{pmatrix} r_{M1} \\ r_{N2} \end{pmatrix} + \det \begin{pmatrix} r_{N1} \\ r_{M2} \end{pmatrix}, where rM1,rM2r_{M1}, r_{M2} are the first and second rows of MM, and rN1,rN2r_{N1}, r_{N2} are the first and second rows of NN.

Let X=AX = |A|, Y=BY = |B|, Z=CZ = |C|. Let dAB=det(rA1rB2)+det(rB1rA2)d_{AB} = \det \begin{pmatrix} r_{A1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{A2} \end{pmatrix}. Let dBC=det(rB1rC2)+det(rC1rB2)d_{BC} = \det \begin{pmatrix} r_{B1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{B2} \end{pmatrix}. Let dCA=det(rC1rA2)+det(rA1rC2)d_{CA} = \det \begin{pmatrix} r_{C1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{A1} \\ r_{C2} \end{pmatrix}.

The given equations are:

  1. A+BC=10    A+B+dABC=10    X+Y+dABZ=10|A + B| - |C| = -10 \implies |A| + |B| + d_{AB} - |C| = -10 \implies X + Y + d_{AB} - Z = -10
  2. B+CA=25    B+C+dBCA=25    Y+Z+dBCX=25|B + C| - |A| = 25 \implies |B| + |C| + d_{BC} - |A| = 25 \implies Y + Z + d_{BC} - X = 25
  3. C+AB=15    C+A+dCAB=15    Z+X+dCAY=15|C + A| - |B| = 15 \implies |C| + |A| + d_{CA} - |B| = 15 \implies Z + X + d_{CA} - Y = 15

Adding the three equations: (X+Y+dABZ)+(Y+Z+dBCX)+(Z+X+dCAY)=10+25+15(X + Y + d_{AB} - Z) + (Y + Z + d_{BC} - X) + (Z + X + d_{CA} - Y) = -10 + 25 + 15 (XX+X)+(Y+YY)+(Z+Z+Z)+dAB+dBC+dCA=30(X - X + X) + (Y + Y - Y) + (-Z + Z + Z) + d_{AB} + d_{BC} + d_{CA} = 30 X+Y+Z+dAB+dBC+dCA=30X + Y + Z + d_{AB} + d_{BC} + d_{CA} = 30.

Now consider A+B+C|A+B+C|. A+B+C=(rA1+rB1+rC1rA2+rB2+rC2)A+B+C = \begin{pmatrix} r_{A1}+r_{B1}+r_{C1} \\ r_{A2}+r_{B2}+r_{C2} \end{pmatrix}. Using the multilinearity property of the determinant with respect to rows: A+B+C=det(rA1+rB1+rC1rA2+rB2+rC2)|A+B+C| = \det \begin{pmatrix} r_{A1}+r_{B1}+r_{C1} \\ r_{A2}+r_{B2}+r_{C2} \end{pmatrix} =det(rA1rA2+rB2+rC2)+det(rB1rA2+rB2+rC2)+det(rC1rA2+rB2+rC2)= \det \begin{pmatrix} r_{A1} \\ r_{A2}+r_{B2}+r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{A2}+r_{B2}+r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{A2}+r_{B2}+r_{C2} \end{pmatrix} =det(rA1rA2)+det(rA1rB2)+det(rA1rC2)+det(rB1rA2)+det(rB1rB2)+det(rB1rC2)+det(rC1rA2)+det(rC1rB2)+det(rC1rC2)= \det \begin{pmatrix} r_{A1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{A1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{A1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{C2} \end{pmatrix} =A+det(rA1rB2)+det(rA1rC2)+det(rB1rA2)+B+det(rB1rC2)+det(rC1rA2)+det(rC1rB2)+C= |A| + \det \begin{pmatrix} r_{A1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{A1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{A2} \end{pmatrix} + |B| + \det \begin{pmatrix} r_{B1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{B2} \end{pmatrix} + |C| Rearranging the terms: A+B+C=A+B+C+(det(rA1rB2)+det(rB1rA2))+(det(rB1rC2)+det(rC1rB2))+(det(rC1rA2)+det(rA1rC2))|A+B+C| = |A| + |B| + |C| + \left(\det \begin{pmatrix} r_{A1} \\ r_{B2} \end{pmatrix} + \det \begin{pmatrix} r_{B1} \\ r_{A2} \end{pmatrix}\right) + \left(\det \begin{pmatrix} r_{B1} \\ r_{C2} \end{pmatrix} + \det \begin{pmatrix} r_{C1} \\ r_{B2} \end{pmatrix}\right) + \left(\det \begin{pmatrix} r_{C1} \\ r_{A2} \end{pmatrix} + \det \begin{pmatrix} r_{A1} \\ r_{C2} \end{pmatrix}\right) A+B+C=X+Y+Z+dAB+dBC+dCA|A+B+C| = X + Y + Z + d_{AB} + d_{BC} + d_{CA}.

Comparing this expression with the sum of the given equations, we see that: A+B+C=(X+Y+Z+dAB+dBC+dCA)=30|A+B+C| = (X + Y + Z + d_{AB} + d_{BC} + d_{CA}) = 30.

The value of A+B+C|A + B + C| is 30.