Solveeit Logo

Question

Question: If **a, b, c** are the three non-coplanar vectors and **p, q, r** are defined by the relations \(\m...

If a, b, c are the three non-coplanar vectors and p, q, r are defined by the relations p=b×c[abc],q=c×a[abc],r=a×b[abc]\mathbf { p } = \frac { \mathbf { b } \times \mathbf { c } } { [ \mathbf { a } \mathbf { b } \mathbf { c } ] } , \mathbf { q } = \frac { \mathbf { c } \times \mathbf { a } } { [ \mathbf { a } \mathbf { b } \mathbf { c } ] } , \mathbf { r } = \frac { \mathbf { a } \times \mathbf { b } } { [ \mathbf { a } \mathbf { b } \mathbf { c } ] } then (a+b) . p +(b+c) . q +(c+a) . r =

A

0

B

1

C

2

D

3

Answer

3

Explanation

Solution

We have p(a+b)=pa+pb\mathbf { p } \cdot ( \mathbf { a } + \mathbf { b } ) = \mathbf { p } \cdot \mathbf { a } + \mathbf { p } \cdot \mathbf { b }

=1+0=1= 1 + 0 = 1 ,

Similarly, and

Thus, required result is 1+1+1=3.