Question
Mathematics Question on Complex Numbers and Quadratic Equations
If a, b,c are the sides of a triangle ABC such that x2−2(a+b+c)x+3λ(ab+bc+ca)=0 has real roots, then
A
$\lambda
B
λ>35
C
λ∈(34,35)
D
λ∈(31,35)
Answer
$\lambda
Explanation
Solution
Since, roots are real, therefore D≥0
⇒4(a+b+c)2−12λ(ab+bc+ca)≥0
⇒(a+b+c)2≥3λ(ab+bc+ca)
⇒(a2+b2+c2)≥(ab+bc+ca)(3λ−2)
⇒3λ−2≤ab+bc+caa2+b2+c2...(i)
Also, cosA=2bcb2+c2−a2<1⇒b2+c2−a2<2bc
Similarly, \hspace15mm\, \, \, c^2+a^2-b^2<2ca
and \hspace25mm\, \, \, a^2+b^2-c^2<2ab
\Rightarrow\hspace25mm a^2+b^2+c^2<2(ab+bc+ca)
\Rightarrow\hspace25mm\frac{a^2+b^2+c^2}{ab+bc+ca}<2\, \, \, \, \, \, \, \, \, \, \, ...(ii)
From Eqs. (i) and (ii), we get
$\hspace25mm 3\lambda-2<2 \Rightarrow \lambda