Question
Mathematics Question on Determinants
If a, b, c are the roots of the equation x3−3x2+3x+7=0, then the value of 2bc−a2 c2 b2c22ac−b2a2b2a22ab−c2 is
A
9
B
27
C
81
D
0
Answer
0
Explanation
Solution
x3−3x2+3x+7=0 ⇒(x−1)3+8=0⇒(x−1)3=(−2)3 ⇒(−2x−1)3=1⇒2x−1=(1)13=1,ω,ω2 ⇒x−1=−2,−2ω,−2ω2⇒x=−1,1−2ω,1−2ω2 ⇒a=−1,b=1−2ω,c=1−2ω2 Now, Δ=2bc−a2 c2 b2c22ac−b2a2b2a22ab−c2=a b cbcacab2 =[−(a3+b3+c3−3abc)]2 =\left\\{\left(a+b+c\right)\left(a^{2}+b^{2}+c^{2}-ab-bc-ca\right)\right\\}^{2} \frac{1}{4}\left(a+b+c\right)^{2}\left\\{\left(a-b\right)^{2}+\left(b-c\right)^{2}+\left(c-a\right)^{2}\right\\}^{2}=0