Solveeit Logo

Question

Mathematics Question on Determinants

If aa, bb, cc are the roots of the equation x33x2+3x+7=0x^{3}-3x^{2}+3x+7=0, then the value of 2bca2c2b2 c22acb2a2 b2a22abc2\left|\begin{matrix}2bc-a^{2}&c^{2}&b^{2}\\\ c^{2}&2ac-b^{2}&a^{2}\\\ b^{2}&a^{2}&2ab-c^{2}\end{matrix}\right| is

A

99

B

2727

C

8181

D

00

Answer

00

Explanation

Solution

x33x2+3x+7=0x^{3}-3x^{2}+3x+7=0 (x1)3+8=0(x1)3=(2)3\Rightarrow\quad\left(x-1\right)^{3}+8=0 \Rightarrow\left(x-1\right)^{3}=\left(-2\right)^{3} (x12)3=1x12=(1)13=1,ω,ω2\Rightarrow\quad\left(\frac{x-1}{-2}\right)^{3}=1 \,\Rightarrow\quad\frac{x-1}{2}=\left(1\right)^{1 3}=1, \omega, \omega^{2} x1=2,2ω,2ω2x=1,12ω,12ω2\Rightarrow\quad x-1=-2, -2\omega, -2\omega^{2} \Rightarrow x=-1,1-2\omega, 1-2\omega^{2} a=1,b=12ω,c=12ω2\Rightarrow\quad a=-1, b=1-2\omega, c=1-2\omega^{2} Now, Δ=2bca2c2b2 c22acb2a2 b2a22abc2=abc bca cab2\Delta=\left|\begin{matrix}2bc-a^{2}&c^{2}&b^{2}\\\ c^{2}&2ac-b^{2}&a^{2}\\\ b^{2}&a^{2}&2ab-c^{2}\end{matrix}\right|=\left|\begin{matrix}a&b&c\\\ b&c&a\\\ c&a&b\end{matrix}\right|^{2} =[(a3+b3+c33abc)]2=\left[-\left(a^{3}+b^{3}+c^{3}-3abc\right)\right]^{2} =\left\\{\left(a+b+c\right)\left(a^{2}+b^{2}+c^{2}-ab-bc-ca\right)\right\\}^{2} \frac{1}{4}\left(a+b+c\right)^{2}\left\\{\left(a-b\right)^{2}+\left(b-c\right)^{2}+\left(c-a\right)^{2}\right\\}^{2}=0