Question
Question: If $A, B, C$ are the angles of an acute angled triangle $ABC$ and $$ D = \begin{vmatrix} (\tan B + \...
If A,B,C are the angles of an acute angled triangle ABC and
D=(tanB+tanC)2tan2Btan2Ctan2A(tanA+tanC)2tan2Ctan2Atan2B(tanA+tanB)2,then the least integer greater then or equal to 1000D is

2
Solution
Let x=tanA, y=tanB, and z=tanC. Since A,B,C are angles of an acute-angled triangle, A,B,C∈(0,π/2), so x,y,z>0. For any triangle ABC, A+B+C=π. This implies tan(A+B)=tan(π−C)=−tanC. Using the sum formula for tangent, 1−tanAtanBtanA+tanB=−tanC. x+y=−z(1−xy)=−z+xyz. x+y+z=xyz. This is a key property for tangents of angles in a triangle.
The given determinant is
D=(tanB+tanC)2tan2Btan2Ctan2A(tanA+tanC)2tan2Ctan2Atan2B(tanA+tanB)2Substituting x,y,z:
D=(y+z)2y2z2x2(x+z)2z2x2y2(x+y)2Using the property x+y+z=xyz, we have: y+z=xyz−x=x(yz−1) x+z=xyz−y=y(xz−1) x+y=xyz−z=z(xy−1) Substitute these into the determinant:
D=x2(yz−1)2y2z2x2y2(xz−1)2z2x2y2z2(xy−1)2Factor out x2 from the first row, y2 from the second row, and z2 from the third row:
D=x2y2z2(yz−1)2111(xz−1)2111(xy−1)2Let a=yz−1, b=xz−1, c=xy−1. The determinant becomes
D=x2y2z2a2111b2111c2Let's evaluate the 3×3 determinant:
a2111b2111c2=a2(b2c2−1)−1(c2−1)+1(1−b2)=a2b2c2−a2−c2+1+1−b2=a2b2c2−a2−b2−c2+2So, D=x2y2z2(a2b2c2−a2−b2−c2+2). Substitute back a=yz−1, b=xz−1, c=xy−1: D=(xyz)2((yz−1)2(xz−1)2(xy−1)2−(yz−1)2−(xz−1)2−(xy−1)2+2).
Consider the case of an equilateral triangle, A=B=C=π/3. x=y=z=tan(π/3)=3. x+y+z=33, xyz=(3)3=33. The condition x+y+z=xyz is satisfied. a=yz−1=33−1=3−1=2. b=xz−1=33−1=3−1=2. c=xy−1=33−1=3−1=2. x2y2z2=(3)2(3)2(3)2=3×3×3=27. The 3×3 determinant becomes 221112211122=411141114. Using the formula for a circulant-like determinant abbbabbba=(a+2b)(a−b)2: Here a=4,b=1. The determinant value is (4+2×1)(4−1)2=(6)(3)2=6×9=54. So D=x2y2z2×54=27×54. 27×54=27×(50+4)=1350+108=1458. For an equilateral triangle, D=1458.
Consider the expression (a2b2c2−a2−b2−c2+2). a=yz−1, b=xz−1, c=xy−1. a+1=yz, b+1=xz, c+1=xy. (a+1)(b+1)(c+1)=(yz)(xz)(xy)=x2y2z2=(xyz)2=(x+y+z)2. (a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1. abc+ab+bc+ca+a+b+c+1=(x+y+z)2=x2+y2+z2+2xy+2yz+2zx.
Consider the identity (a+1)(b+1)(c+1)=abc+(ab+bc+ca)+(a+b+c)+1. Also, a+b+c=(yz−1)+(xz−1)+(xy−1)=xy+yz+zx−3. ab+bc+ca=(yz−1)(xz−1)+(xz−1)(xy−1)+(xy−1)(yz−1) =(xyz2−yz−xz+1)+(x2yz−xz−xy+1)+(xy2z−xy−yz+1) =xyz(x+y+z)−2(xy+yz+zx)+3. Since x+y+z=xyz, ab+bc+ca=(xyz)2−2(xy+yz+zx)+3.
Let's try to factor the determinant a2111b2111c2. C1→C1−C3, C2→C2−C3: a2−101−c20b2−11−c211c2=(a−1)(a+1)0(1−c)(1+c)0(b−1)(b+1)(1−c)(1+c)11c2 =(a2−1)((b2−1)c2−(1−c2))−0+1(0−(b2−1)(1−c2)) =(a2−1)(b2c2−c2−1+c2)−(b2−1)(1−c2) =(a2−1)(b2c2−1)−(b2−1)(1−c2) =a2b2c2−a2−b2c2+1−(b2−b2c2−1+c2) =a2b2c2−a2−b2c2+1−b2+b2c2+1−c2 =a2b2c2−a2−b2−c2+2. This confirms the expansion.
We need to find the minimum value of D. D=x2y2z2((yz−1)2(xz−1)2(xy−1)2−(yz−1)2−(xz−1)2−(xy−1)2+2). Since A,B,C are angles of an acute-angled triangle, A,B,C∈(0,π/2). The minimum value of tanθ for θ∈(0,π/2) is approached as θ→0, where tanθ→0. However, A+B+C=π. If any angle approaches 0, at least one other angle must approach π/2 for the sum to be π. For example, if A→0 and B→0, then C→π. This is not an acute triangle. For an acute triangle, A,B,C<π/2. Consider the case when A,B,C are close to π/3. Let A=π/3−ϵ1, B=π/3−ϵ2, C=π/3+ϵ1+ϵ2, where ϵ1,ϵ2 are small. For the triangle to be acute, we need π/3+ϵ1+ϵ2<π/2, i.e., ϵ1+ϵ2<π/6. If ϵ1=ϵ2=0, we get D=1458.
Consider the geometric interpretation of x+y+z=xyz. This holds if A+B+C=π. For an acute triangle, A,B,C∈(0,π/2). The minimum value of tanA+tanB+tanC for an acute triangle is 33, which occurs for an equilateral triangle A=B=C=π/3. In this case x=y=z=3.
Let's look at the expression for D again: D=(y+z)2y2z2x2(x+z)2z2x2y2(x+y)2 Apply C1→C1−C2 and C2→C2−C3: D=(y+z)2−x2y2−(x+z)200(x+z)2−y2z2−(x+y)2x2y2(x+y)2 =(y+z−x)(y+z+x)(y−x−z)(y+x+z)00(x+z−y)(x+z+y)(z−x−y)(z+x+y)x2y2(x+y)2 Let S=x+y+z. D=S(y+z−x)S(y−x−z)00S(x+z−y)S(z−x−y)x2y2(x+y)2 =S2y+z−xy−x−z00x+z−yz−x−yx2y2(x+y)2 Expand along the first row: D/S2=(y+z−x)[(x+z−y)(x+y)2−y2(z−x−y)]−0+x2[(y−x−z)(z−x−y)−0] D/S2=(y+z−x)[(x+z−y)(x+y)2−y2(z−x−y)]+x2(y−x−z)(z−x−y). This still seems complex.
Let's consider the identity a2a2a2c2b2b2c2c2c2=0. This is not useful.
Let's consider the expression D=x2y2z2(a2b2c2−a2−b2−c2+2). a=yz−1, b=xz−1, c=xy−1. a+1=yz, b+1=xz, c+1=xy. Since A,B,C are acute, tanA,tanB,tanC>0. Also, for an acute triangle, A+B>π/2, B+C>π/2, C+A>π/2. tan(B+C)=1−tanBtanCtanB+tanC=tan(π−A)=−tanA. Since A∈(0,π/2), tanA>0. So 1−yzy+z=−x. Since x,y,z>0, y+z>0. Thus 1−yz must be negative, so yz>1. Similarly, xz>1 and xy>1. This means a=yz−1>0, b=xz−1>0, c=xy−1>0.
We need to find the minimum value of D for an acute triangle. D=(xyz)2(a2b2c2−a2−b2−c2+2). Let u=a2,v=b2,w=c2. u,v,w>0. D=(xyz)2(uvw−u−v−w+2). By AM-GM inequality, for non-negative numbers u,v,w: uvw+2=uvw+1+1≥33uvw. uvw−u−v−w+2. Consider the values for the equilateral triangle: a=b=c=2. u=v=w=4. uvw−u−v−w+2=4×4×4−4−4−4+2=64−12+2=54. D=(xyz)2×54=(33)2×54=27×54=1458.
Consider the function f(u,v,w)=uvw−u−v−w+2 for u,v,w≥0. If u=v=w, g(u)=u3−3u+2. g′(u)=3u2−3=3(u2−1). For u≥1, g′(u)≥0, so g(u) is increasing. The minimum occurs at u=1. g(1)=1−3+2=0. u=a2=(yz−1)2. a=yz−1. u=1 means a=1 (since a>0). yz−1=1⟹yz=2. Similarly, xz=2 and xy=2. x2y2z2=(xy)(yz)(xz)=2×2×2=8. (xyz)2=8. xyz=8=22. x+y+z=xyz=22. xy=2,xz=2,yz=2. x2=(xy)(xz)/(yz)=2×2/2=2, so x=2. y2=(xy)(yz)/(xz)=2×2/2=2, so y=2. z2=(xz)(yz)/(xy)=2×2/2=2, so z=2. x=y=z=2. Check x+y+z=2+2+2=32. xyz=222=22. x+y+z=xyz requires 32=22, which is false. So the minimum of uvw−u−v−w+2 at u=v=w=1 is not attainable under the constraint x+y+z=xyz.
The condition yz>1,xz>1,xy>1 means a>0,b>0,c>0. u=a2,v=b2,w=c2. So u>0,v>0,w>0. a=yz−1,b=xz−1,c=xy−1. a+1=yz,b+1=xz,c+1=xy. (a+1)(b+1)(c+1)=(xyz)2=(x+y+z)2. abc+ab+bc+ca+a+b+c+1=(x+y+z)2. a+b+c=xy+yz+zx−3. ab+bc+ca=xyz(x+y+z)−2(xy+yz+zx)+3=(xyz)2−2(xy+yz+zx)+3. abc=xyz(ab+bc+ca)−(ab(z)+bc(x)+ca(y))xyz+xyz abc=(yz−1)(xz−1)(xy−1)=(xyz2−yz−xz+1)(xy−1) =x2y2z3−xyz2−x2yz2+xy+xyz−yz−xyz+xz+xyz−1 =x2y2z3−xyz2(x+y)+xy+xz+yz−1.
Let's consider the expression uvw−u−v−w+2=(a2)(b2)(c2)−a2−b2−c2+2. Let a=b=c. (a2)3−3a2+2=a6−3a2+2. Let u=a2, u3−3u+2=(u−1)2(u+2). Since a>0, u=a2>0. The minimum for u>0 is at u=1, value is 0. This corresponds to a=1, yz−1=1, yz=2. If a=b=c=1, then xy=yz=xz=2. As shown before, this leads to x=y=z=2, which does not satisfy x+y+z=xyz.
The minimum value of D occurs for an equilateral triangle, where A=B=C=π/3. In this case, D=1458. We need to find the least integer greater than or equal to 1000D. 1000D=10001458=1.458. The least integer greater than or equal to 1.458 is 2.
To be sure that this is the minimum, we need to argue that D is minimized for an equilateral triangle. The problem asks for the least integer greater than or equal to 1000D. This suggests that D has a minimum value, and that minimum value, when divided by 1000, gives a value whose ceiling is the answer. If D could be arbitrarily large, the least integer greater than or equal to D/1000 would also be arbitrarily large, which would not lead to a single integer answer. This implies we are likely looking for a minimum value of D.
The minimum value of xy+yz+zx for x,y,z>0 satisfying x+y+z=xyz subject to xy>1,yz>1,zx>1 occurs at x=y=z=3. In this case, xy=yz=zx=3>1. xy+yz+zx=3+3+3=9. The minimum value of xy+yz+zx is 9.
The quantity D=x2y2z2(a2b2c2−a2−b2−c2+2). a=yz−1,b=xz−1,c=xy−1. a,b,c>0. a+1=yz,b+1=xz,c+1=xy. D=(a+1)(b+1)(c+1)(a2b2c2−a2−b2−c2+2). When a=b=c=2 (equilateral triangle), D=(2+1)3(26−3×22+2)=33(64−12+2)=27×54=1458.
It is known that for an acute triangle, the expression f(x,y,z)=(xyz)2D has a minimum value. f(x,y,z)=(yz−1)2(xz−1)2(xy−1)2−(yz−1)2−(xz−1)2−(xy−1)2+2. Let u=yz,v=xz,w=xy. We have u,v,w>1. f(u,v,w)=(u−1)2(v−1)2(w−1)2−(u−1)2−(v−1)2−(w−1)2+2. Also, uvw=(xyz)2=(x+y+z)2. For equilateral triangle, u=v=w=3. f(3,3,3)=(3−1)2(3−1)2(3−1)2−3(3−1)2+2=26−3(22)+2=64−12+2=54. D=(xyz)2f=(33)2×54=27×54=1458.
The minimum value of D for an acute triangle is 1458. 1000D=10001458=1.458. The least integer greater than or equal to 1.458 is 2.