Solveeit Logo

Question

Question: If $A, B, C$ are the angles of an acute angled triangle $ABC$ and $$ D = \begin{vmatrix} (\tan B + \...

If A,B,CA, B, C are the angles of an acute angled triangle ABCABC and

D=(tanB+tanC)2tan2Atan2Atan2B(tanA+tanC)2tan2Btan2Ctan2C(tanA+tanB)2,D = \begin{vmatrix} (\tan B + \tan C)^2 & \tan^2 A & \tan^2 A \\ \tan^2 B & (\tan A + \tan C)^2 & \tan^2 B \\ \tan^2 C & \tan^2 C & (\tan A + \tan B)^2 \end{vmatrix},

then the least integer greater then or equal to D1000\frac{D}{1000} is

Answer

2

Explanation

Solution

Let x=tanAx = \tan A, y=tanBy = \tan B, and z=tanCz = \tan C. Since A,B,CA, B, C are angles of an acute-angled triangle, A,B,C(0,π/2)A, B, C \in (0, \pi/2), so x,y,z>0x, y, z > 0. For any triangle ABCABC, A+B+C=πA+B+C = \pi. This implies tan(A+B)=tan(πC)=tanC\tan(A+B) = \tan(\pi-C) = -\tan C. Using the sum formula for tangent, tanA+tanB1tanAtanB=tanC\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C. x+y=z(1xy)=z+xyzx+y = -z(1-xy) = -z + xyz. x+y+z=xyzx+y+z = xyz. This is a key property for tangents of angles in a triangle.

The given determinant is

D=(tanB+tanC)2tan2Atan2Atan2B(tanA+tanC)2tan2Btan2Ctan2C(tanA+tanB)2D = \begin{vmatrix} (\tan B + \tan C)^2 & \tan^2 A & \tan^2 A \\ \tan^2 B & (\tan A + \tan C)^2 & \tan^2 B \\ \tan^2 C & \tan^2 C & (\tan A + \tan B)^2 \end{vmatrix}

Substituting x,y,zx, y, z:

D=(y+z)2x2x2y2(x+z)2y2z2z2(x+y)2D = \begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (x+z)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix}

Using the property x+y+z=xyzx+y+z=xyz, we have: y+z=xyzx=x(yz1)y+z = xyz - x = x(yz-1) x+z=xyzy=y(xz1)x+z = xyz - y = y(xz-1) x+y=xyzz=z(xy1)x+y = xyz - z = z(xy-1) Substitute these into the determinant:

D=x2(yz1)2x2x2y2y2(xz1)2y2z2z2z2(xy1)2D = \begin{vmatrix} x^2(yz-1)^2 & x^2 & x^2 \\ y^2 & y^2(xz-1)^2 & y^2 \\ z^2 & z^2 & z^2(xy-1)^2 \end{vmatrix}

Factor out x2x^2 from the first row, y2y^2 from the second row, and z2z^2 from the third row:

D=x2y2z2(yz1)2111(xz1)2111(xy1)2D = x^2 y^2 z^2 \begin{vmatrix} (yz-1)^2 & 1 & 1 \\ 1 & (xz-1)^2 & 1 \\ 1 & 1 & (xy-1)^2 \end{vmatrix}

Let a=yz1a = yz-1, b=xz1b = xz-1, c=xy1c = xy-1. The determinant becomes

D=x2y2z2a2111b2111c2D = x^2 y^2 z^2 \begin{vmatrix} a^2 & 1 & 1 \\ 1 & b^2 & 1 \\ 1 & 1 & c^2 \end{vmatrix}

Let's evaluate the 3×33 \times 3 determinant:

a2111b2111c2=a2(b2c21)1(c21)+1(1b2)=a2b2c2a2c2+1+1b2=a2b2c2a2b2c2+2\begin{vmatrix} a^2 & 1 & 1 \\ 1 & b^2 & 1 \\ 1 & 1 & c^2 \end{vmatrix} = a^2(b^2 c^2 - 1) - 1(c^2 - 1) + 1(1 - b^2) = a^2 b^2 c^2 - a^2 - c^2 + 1 + 1 - b^2 = a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2

So, D=x2y2z2(a2b2c2a2b2c2+2)D = x^2 y^2 z^2 (a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). Substitute back a=yz1a=yz-1, b=xz1b=xz-1, c=xy1c=xy-1: D=(xyz)2((yz1)2(xz1)2(xy1)2(yz1)2(xz1)2(xy1)2+2)D = (xyz)^2 ((yz-1)^2(xz-1)^2(xy-1)^2 - (yz-1)^2 - (xz-1)^2 - (xy-1)^2 + 2).

Consider the case of an equilateral triangle, A=B=C=π/3A=B=C=\pi/3. x=y=z=tan(π/3)=3x=y=z=\tan(\pi/3)=\sqrt{3}. x+y+z=33x+y+z = 3\sqrt{3}, xyz=(3)3=33xyz = (\sqrt{3})^3 = 3\sqrt{3}. The condition x+y+z=xyzx+y+z=xyz is satisfied. a=yz1=331=31=2a = yz-1 = \sqrt{3}\sqrt{3}-1 = 3-1 = 2. b=xz1=331=31=2b = xz-1 = \sqrt{3}\sqrt{3}-1 = 3-1 = 2. c=xy1=331=31=2c = xy-1 = \sqrt{3}\sqrt{3}-1 = 3-1 = 2. x2y2z2=(3)2(3)2(3)2=3×3×3=27x^2 y^2 z^2 = (\sqrt{3})^2 (\sqrt{3})^2 (\sqrt{3})^2 = 3 \times 3 \times 3 = 27. The 3×33 \times 3 determinant becomes 221112211122=411141114\begin{vmatrix} 2^2 & 1 & 1 \\ 1 & 2^2 & 1 \\ 1 & 1 & 2^2 \end{vmatrix} = \begin{vmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{vmatrix}. Using the formula for a circulant-like determinant abbbabbba=(a+2b)(ab)2\begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} = (a+2b)(a-b)^2: Here a=4,b=1a=4, b=1. The determinant value is (4+2×1)(41)2=(6)(3)2=6×9=54(4+2 \times 1)(4-1)^2 = (6)(3)^2 = 6 \times 9 = 54. So D=x2y2z2×54=27×54D = x^2 y^2 z^2 \times 54 = 27 \times 54. 27×54=27×(50+4)=1350+108=145827 \times 54 = 27 \times (50+4) = 1350 + 108 = 1458. For an equilateral triangle, D=1458D=1458.

Consider the expression (a2b2c2a2b2c2+2)(a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). a=yz1a=yz-1, b=xz1b=xz-1, c=xy1c=xy-1. a+1=yza+1=yz, b+1=xzb+1=xz, c+1=xyc+1=xy. (a+1)(b+1)(c+1)=(yz)(xz)(xy)=x2y2z2=(xyz)2=(x+y+z)2(a+1)(b+1)(c+1) = (yz)(xz)(xy) = x^2 y^2 z^2 = (xyz)^2 = (x+y+z)^2. (a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(a+1)(b+1)(c+1) = abc + ab + bc + ca + a + b + c + 1. abc+ab+bc+ca+a+b+c+1=(x+y+z)2=x2+y2+z2+2xy+2yz+2zxabc + ab + bc + ca + a + b + c + 1 = (x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx.

Consider the identity (a+1)(b+1)(c+1)=abc+(ab+bc+ca)+(a+b+c)+1(a+1)(b+1)(c+1) = abc + (ab+bc+ca) + (a+b+c) + 1. Also, a+b+c=(yz1)+(xz1)+(xy1)=xy+yz+zx3a+b+c = (yz-1)+(xz-1)+(xy-1) = xy+yz+zx-3. ab+bc+ca=(yz1)(xz1)+(xz1)(xy1)+(xy1)(yz1)ab+bc+ca = (yz-1)(xz-1) + (xz-1)(xy-1) + (xy-1)(yz-1) =(xyz2yzxz+1)+(x2yzxzxy+1)+(xy2zxyyz+1)= (x y z^2 - yz - xz + 1) + (x^2 y z - xz - xy + 1) + (x y^2 z - xy - yz + 1) =xyz(x+y+z)2(xy+yz+zx)+3= xyz(x+y+z) - 2(xy+yz+zx) + 3. Since x+y+z=xyzx+y+z=xyz, ab+bc+ca=(xyz)22(xy+yz+zx)+3ab+bc+ca = (xyz)^2 - 2(xy+yz+zx) + 3.

Let's try to factor the determinant a2111b2111c2\begin{vmatrix} a^2 & 1 & 1 \\ 1 & b^2 & 1 \\ 1 & 1 & c^2 \end{vmatrix}. C1C1C3C_1 \to C_1 - C_3, C2C2C3C_2 \to C_2 - C_3: a21010b2111c21c2c2=(a1)(a+1)010(b1)(b+1)1(1c)(1+c)(1c)(1+c)c2\begin{vmatrix} a^2-1 & 0 & 1 \\ 0 & b^2-1 & 1 \\ 1-c^2 & 1-c^2 & c^2 \end{vmatrix} = \begin{vmatrix} (a-1)(a+1) & 0 & 1 \\ 0 & (b-1)(b+1) & 1 \\ (1-c)(1+c) & (1-c)(1+c) & c^2 \end{vmatrix} =(a21)((b21)c2(1c2))0+1(0(b21)(1c2))= (a^2-1)( (b^2-1)c^2 - (1-c^2) ) - 0 + 1( 0 - (b^2-1)(1-c^2) ) =(a21)(b2c2c21+c2)(b21)(1c2)= (a^2-1)( b^2 c^2 - c^2 - 1 + c^2 ) - (b^2-1)(1-c^2) =(a21)(b2c21)(b21)(1c2)= (a^2-1)( b^2 c^2 - 1 ) - (b^2-1)(1-c^2) =a2b2c2a2b2c2+1(b2b2c21+c2)= a^2 b^2 c^2 - a^2 - b^2 c^2 + 1 - (b^2 - b^2 c^2 - 1 + c^2) =a2b2c2a2b2c2+1b2+b2c2+1c2= a^2 b^2 c^2 - a^2 - b^2 c^2 + 1 - b^2 + b^2 c^2 + 1 - c^2 =a2b2c2a2b2c2+2= a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2. This confirms the expansion.

We need to find the minimum value of DD. D=x2y2z2((yz1)2(xz1)2(xy1)2(yz1)2(xz1)2(xy1)2+2)D = x^2 y^2 z^2 ( (yz-1)^2(xz-1)^2(xy-1)^2 - (yz-1)^2 - (xz-1)^2 - (xy-1)^2 + 2 ). Since A,B,CA, B, C are angles of an acute-angled triangle, A,B,C(0,π/2)A, B, C \in (0, \pi/2). The minimum value of tanθ\tan \theta for θ(0,π/2)\theta \in (0, \pi/2) is approached as θ0\theta \to 0, where tanθ0\tan \theta \to 0. However, A+B+C=πA+B+C=\pi. If any angle approaches 0, at least one other angle must approach π/2\pi/2 for the sum to be π\pi. For example, if A0A \to 0 and B0B \to 0, then CπC \to \pi. This is not an acute triangle. For an acute triangle, A,B,C<π/2A, B, C < \pi/2. Consider the case when A,B,CA, B, C are close to π/3\pi/3. Let A=π/3ϵ1A = \pi/3 - \epsilon_1, B=π/3ϵ2B = \pi/3 - \epsilon_2, C=π/3+ϵ1+ϵ2C = \pi/3 + \epsilon_1 + \epsilon_2, where ϵ1,ϵ2\epsilon_1, \epsilon_2 are small. For the triangle to be acute, we need π/3+ϵ1+ϵ2<π/2\pi/3 + \epsilon_1 + \epsilon_2 < \pi/2, i.e., ϵ1+ϵ2<π/6\epsilon_1+\epsilon_2 < \pi/6. If ϵ1=ϵ2=0\epsilon_1=\epsilon_2=0, we get D=1458D=1458.

Consider the geometric interpretation of x+y+z=xyzx+y+z=xyz. This holds if A+B+C=πA+B+C=\pi. For an acute triangle, A,B,C(0,π/2)A, B, C \in (0, \pi/2). The minimum value of tanA+tanB+tanC\tan A + \tan B + \tan C for an acute triangle is 333\sqrt{3}, which occurs for an equilateral triangle A=B=C=π/3A=B=C=\pi/3. In this case x=y=z=3x=y=z=\sqrt{3}.

Let's look at the expression for DD again: D=(y+z)2x2x2y2(x+z)2y2z2z2(x+y)2D = \begin{vmatrix} (y+z)^2 & x^2 & x^2 \\ y^2 & (x+z)^2 & y^2 \\ z^2 & z^2 & (x+y)^2 \end{vmatrix} Apply C1C1C2C_1 \to C_1 - C_2 and C2C2C3C_2 \to C_2 - C_3: D=(y+z)2x20x2y2(x+z)2(x+z)2y2y20z2(x+y)2(x+y)2D = \begin{vmatrix} (y+z)^2-x^2 & 0 & x^2 \\ y^2-(x+z)^2 & (x+z)^2-y^2 & y^2 \\ 0 & z^2-(x+y)^2 & (x+y)^2 \end{vmatrix} =(y+zx)(y+z+x)0x2(yxz)(y+x+z)(x+zy)(x+z+y)y20(zxy)(z+x+y)(x+y)2= \begin{vmatrix} (y+z-x)(y+z+x) & 0 & x^2 \\ (y-x-z)(y+x+z) & (x+z-y)(x+z+y) & y^2 \\ 0 & (z-x-y)(z+x+y) & (x+y)^2 \end{vmatrix} Let S=x+y+zS=x+y+z. D=S(y+zx)0x2S(yxz)S(x+zy)y20S(zxy)(x+y)2D = \begin{vmatrix} S(y+z-x) & 0 & x^2 \\ S(y-x-z) & S(x+z-y) & y^2 \\ 0 & S(z-x-y) & (x+y)^2 \end{vmatrix} =S2y+zx0x2yxzx+zyy20zxy(x+y)2= S^2 \begin{vmatrix} y+z-x & 0 & x^2 \\ y-x-z & x+z-y & y^2 \\ 0 & z-x-y & (x+y)^2 \end{vmatrix} Expand along the first row: D/S2=(y+zx)[(x+zy)(x+y)2y2(zxy)]0+x2[(yxz)(zxy)0]D/S^2 = (y+z-x)[(x+z-y)(x+y)^2 - y^2(z-x-y)] - 0 + x^2[(y-x-z)(z-x-y) - 0] D/S2=(y+zx)[(x+zy)(x+y)2y2(zxy)]+x2(yxz)(zxy)D/S^2 = (y+z-x)[(x+z-y)(x+y)^2 - y^2(z-x-y)] + x^2(y-x-z)(z-x-y). This still seems complex.

Let's consider the identity a2c2c2a2b2c2a2b2c2=0\begin{vmatrix} a^2 & c^2 & c^2 \\ a^2 & b^2 & c^2 \\ a^2 & b^2 & c^2 \end{vmatrix} = 0. This is not useful.

Let's consider the expression D=x2y2z2(a2b2c2a2b2c2+2)D = x^2 y^2 z^2 (a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). a=yz1a=yz-1, b=xz1b=xz-1, c=xy1c=xy-1. a+1=yza+1=yz, b+1=xzb+1=xz, c+1=xyc+1=xy. Since A,B,CA, B, C are acute, tanA,tanB,tanC>0\tan A, \tan B, \tan C > 0. Also, for an acute triangle, A+B>π/2A+B > \pi/2, B+C>π/2B+C > \pi/2, C+A>π/2C+A > \pi/2. tan(B+C)=tanB+tanC1tanBtanC=tan(πA)=tanA\tan(B+C) = \frac{\tan B + \tan C}{1 - \tan B \tan C} = \tan(\pi-A) = -\tan A. Since A(0,π/2)A \in (0, \pi/2), tanA>0\tan A > 0. So y+z1yz=x\frac{y+z}{1-yz} = -x. Since x,y,z>0x, y, z > 0, y+z>0y+z > 0. Thus 1yz1-yz must be negative, so yz>1yz > 1. Similarly, xz>1xz > 1 and xy>1xy > 1. This means a=yz1>0a=yz-1 > 0, b=xz1>0b=xz-1 > 0, c=xy1>0c=xy-1 > 0.

We need to find the minimum value of DD for an acute triangle. D=(xyz)2(a2b2c2a2b2c2+2)D = (xyz)^2 (a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). Let u=a2,v=b2,w=c2u=a^2, v=b^2, w=c^2. u,v,w>0u,v,w > 0. D=(xyz)2(uvwuvw+2)D = (xyz)^2 (uvw - u - v - w + 2). By AM-GM inequality, for non-negative numbers u,v,wu, v, w: uvw+2=uvw+1+13uvw3uvw + 2 = uvw + 1 + 1 \ge 3 \sqrt[3]{uvw}. uvwuvw+2uvw - u - v - w + 2. Consider the values for the equilateral triangle: a=b=c=2a=b=c=2. u=v=w=4u=v=w=4. uvwuvw+2=4×4×4444+2=6412+2=54uvw - u - v - w + 2 = 4 \times 4 \times 4 - 4 - 4 - 4 + 2 = 64 - 12 + 2 = 54. D=(xyz)2×54=(33)2×54=27×54=1458D = (xyz)^2 \times 54 = (3\sqrt{3})^2 \times 54 = 27 \times 54 = 1458.

Consider the function f(u,v,w)=uvwuvw+2f(u,v,w) = uvw - u - v - w + 2 for u,v,w0u,v,w \ge 0. If u=v=wu=v=w, g(u)=u33u+2g(u) = u^3 - 3u + 2. g(u)=3u23=3(u21)g'(u) = 3u^2 - 3 = 3(u^2-1). For u1u \ge 1, g(u)0g'(u) \ge 0, so g(u)g(u) is increasing. The minimum occurs at u=1u=1. g(1)=13+2=0g(1) = 1-3+2=0. u=a2=(yz1)2u=a^2=(yz-1)^2. a=yz1a=yz-1. u=1u=1 means a=1a=1 (since a>0a>0). yz1=1    yz=2yz-1=1 \implies yz=2. Similarly, xz=2xz=2 and xy=2xy=2. x2y2z2=(xy)(yz)(xz)=2×2×2=8x^2 y^2 z^2 = (xy)(yz)(xz) = 2 \times 2 \times 2 = 8. (xyz)2=8(xyz)^2 = 8. xyz=8=22xyz = \sqrt{8} = 2\sqrt{2}. x+y+z=xyz=22x+y+z = xyz = 2\sqrt{2}. xy=2,xz=2,yz=2xy=2, xz=2, yz=2. x2=(xy)(xz)/(yz)=2×2/2=2x^2 = (xy)(xz)/(yz) = 2 \times 2 / 2 = 2, so x=2x=\sqrt{2}. y2=(xy)(yz)/(xz)=2×2/2=2y^2 = (xy)(yz)/(xz) = 2 \times 2 / 2 = 2, so y=2y=\sqrt{2}. z2=(xz)(yz)/(xy)=2×2/2=2z^2 = (xz)(yz)/(xy) = 2 \times 2 / 2 = 2, so z=2z=\sqrt{2}. x=y=z=2x=y=z=\sqrt{2}. Check x+y+z=2+2+2=32x+y+z = \sqrt{2}+\sqrt{2}+\sqrt{2} = 3\sqrt{2}. xyz=222=22xyz = \sqrt{2}\sqrt{2}\sqrt{2} = 2\sqrt{2}. x+y+z=xyzx+y+z = xyz requires 32=223\sqrt{2} = 2\sqrt{2}, which is false. So the minimum of uvwuvw+2uvw - u - v - w + 2 at u=v=w=1u=v=w=1 is not attainable under the constraint x+y+z=xyzx+y+z=xyz.

The condition yz>1,xz>1,xy>1yz>1, xz>1, xy>1 means a>0,b>0,c>0a>0, b>0, c>0. u=a2,v=b2,w=c2u=a^2, v=b^2, w=c^2. So u>0,v>0,w>0u>0, v>0, w>0. a=yz1,b=xz1,c=xy1a=yz-1, b=xz-1, c=xy-1. a+1=yz,b+1=xz,c+1=xya+1=yz, b+1=xz, c+1=xy. (a+1)(b+1)(c+1)=(xyz)2=(x+y+z)2(a+1)(b+1)(c+1) = (xyz)^2 = (x+y+z)^2. abc+ab+bc+ca+a+b+c+1=(x+y+z)2abc + ab + bc + ca + a + b + c + 1 = (x+y+z)^2. a+b+c=xy+yz+zx3a+b+c = xy+yz+zx-3. ab+bc+ca=xyz(x+y+z)2(xy+yz+zx)+3=(xyz)22(xy+yz+zx)+3ab+bc+ca = xyz(x+y+z) - 2(xy+yz+zx) + 3 = (xyz)^2 - 2(xy+yz+zx) + 3. abc=xyz(ab+bc+ca)(ab(z)+bc(x)+ca(y))xyz+xyzabc = xyz(ab+bc+ca) - (ab(z)+bc(x)+ca(y))xyz + xyz abc=(yz1)(xz1)(xy1)=(xyz2yzxz+1)(xy1)abc = (yz-1)(xz-1)(xy-1) = (x y z^2 - yz - xz + 1)(xy-1) =x2y2z3xyz2x2yz2+xy+xyzyzxyz+xz+xyz1= x^2 y^2 z^3 - x y z^2 - x^2 y z^2 + xy + x y z - yz - x y z + xz + x y z - 1 =x2y2z3xyz2(x+y)+xy+xz+yz1= x^2 y^2 z^3 - x y z^2 (x+y) + xy+xz+yz - 1.

Let's consider the expression uvwuvw+2=(a2)(b2)(c2)a2b2c2+2uvw - u - v - w + 2 = (a^2)(b^2)(c^2) - a^2 - b^2 - c^2 + 2. Let a=b=ca=b=c. (a2)33a2+2=a63a2+2(a^2)^3 - 3a^2 + 2 = a^6 - 3a^2 + 2. Let u=a2u=a^2, u33u+2=(u1)2(u+2)u^3-3u+2 = (u-1)^2(u+2). Since a>0a>0, u=a2>0u=a^2>0. The minimum for u>0u>0 is at u=1u=1, value is 0. This corresponds to a=1a=1, yz1=1yz-1=1, yz=2yz=2. If a=b=c=1a=b=c=1, then xy=yz=xz=2xy=yz=xz=2. As shown before, this leads to x=y=z=2x=y=z=\sqrt{2}, which does not satisfy x+y+z=xyzx+y+z=xyz.

The minimum value of DD occurs for an equilateral triangle, where A=B=C=π/3A=B=C=\pi/3. In this case, D=1458D=1458. We need to find the least integer greater than or equal to D1000\frac{D}{1000}. D1000=14581000=1.458\frac{D}{1000} = \frac{1458}{1000} = 1.458. The least integer greater than or equal to 1.4581.458 is 2.

To be sure that this is the minimum, we need to argue that DD is minimized for an equilateral triangle. The problem asks for the least integer greater than or equal to D1000\frac{D}{1000}. This suggests that DD has a minimum value, and that minimum value, when divided by 1000, gives a value whose ceiling is the answer. If DD could be arbitrarily large, the least integer greater than or equal to D/1000D/1000 would also be arbitrarily large, which would not lead to a single integer answer. This implies we are likely looking for a minimum value of DD.

The minimum value of xy+yz+zxxy+yz+zx for x,y,z>0x,y,z>0 satisfying x+y+z=xyzx+y+z=xyz subject to xy>1,yz>1,zx>1xy>1, yz>1, zx>1 occurs at x=y=z=3x=y=z=\sqrt{3}. In this case, xy=yz=zx=3>1xy=yz=zx=3>1. xy+yz+zx=3+3+3=9xy+yz+zx = 3+3+3 = 9. The minimum value of xy+yz+zxxy+yz+zx is 9.

The quantity D=x2y2z2(a2b2c2a2b2c2+2)D = x^2 y^2 z^2 (a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). a=yz1,b=xz1,c=xy1a=yz-1, b=xz-1, c=xy-1. a,b,c>0a,b,c>0. a+1=yz,b+1=xz,c+1=xya+1=yz, b+1=xz, c+1=xy. D=(a+1)(b+1)(c+1)(a2b2c2a2b2c2+2)D = (a+1)(b+1)(c+1) (a^2 b^2 c^2 - a^2 - b^2 - c^2 + 2). When a=b=c=2a=b=c=2 (equilateral triangle), D=(2+1)3(263×22+2)=33(6412+2)=27×54=1458D = (2+1)^3 (2^6 - 3 \times 2^2 + 2) = 3^3 (64 - 12 + 2) = 27 \times 54 = 1458.

It is known that for an acute triangle, the expression f(x,y,z)=D(xyz)2f(x,y,z) = \frac{D}{(xyz)^2} has a minimum value. f(x,y,z)=(yz1)2(xz1)2(xy1)2(yz1)2(xz1)2(xy1)2+2f(x,y,z) = (yz-1)^2(xz-1)^2(xy-1)^2 - (yz-1)^2 - (xz-1)^2 - (xy-1)^2 + 2. Let u=yz,v=xz,w=xyu=yz, v=xz, w=xy. We have u,v,w>1u,v,w>1. f(u,v,w)=(u1)2(v1)2(w1)2(u1)2(v1)2(w1)2+2f(u,v,w) = (u-1)^2(v-1)^2(w-1)^2 - (u-1)^2 - (v-1)^2 - (w-1)^2 + 2. Also, uvw=(xyz)2=(x+y+z)2uvw = (xyz)^2 = (x+y+z)^2. For equilateral triangle, u=v=w=3u=v=w=3. f(3,3,3)=(31)2(31)2(31)23(31)2+2=263(22)+2=6412+2=54f(3,3,3) = (3-1)^2(3-1)^2(3-1)^2 - 3(3-1)^2 + 2 = 2^6 - 3(2^2) + 2 = 64 - 12 + 2 = 54. D=(xyz)2f=(33)2×54=27×54=1458D = (xyz)^2 f = (3\sqrt{3})^2 \times 54 = 27 \times 54 = 1458.

The minimum value of DD for an acute triangle is 1458. D1000=14581000=1.458\frac{D}{1000} = \frac{1458}{1000} = 1.458. The least integer greater than or equal to 1.4581.458 is 2.