Solveeit Logo

Question

Question: If A, B, C are the angles of a triangle then \[\cos A + \cos B + \cos C = ?\]...

If A, B, C are the angles of a triangle then cosA+cosB+cosC=?\cos A + \cos B + \cos C = ?

Explanation

Solution

Hint : Here in this question, we have to find the value given trigonometric expression. For this, first we need to consider the sum of inner angles of triangle ABC\vartriangle ABC, then apply a double or half angle formula, sum to product formula and other standard formula on simplification we get the required solution.

Complete step by step solution:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
If A, B, C are angles of a triangle, then we know the sum of all interior angles of a triangle should be equal to 180{180^ \circ }.
A+B+C=180\Rightarrow \,\,A + B + C = {180^ \circ }
And
A+B=180C\Rightarrow \,\,A + B = {180^ \circ } - C.
Consider,
cosA+cosB+cosC\Rightarrow \,\,\,\cos A + \cos B + \cos C --------- (1)
Let us by the sum to product formula and double angle of trigonometric ratios:
The sum to product of cosine ratio is:
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right).
The double angle of cosine ratio is:
cos2A=12sin2A\cos 2A = 1 - 2{\sin ^2}A or cosA=12sin2(A2)\cos A = 1 - 2{\sin ^2}\left( {\dfrac{A}{2}} \right).
Then equation (1) becomes
2cos(A+B2)cos(AB2)+12sin2(C2)\Rightarrow \,\,\,2\cos \left( {\dfrac{{A + B}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)
But A+B=180CA + B = {180^ \circ } - C
2cos(180C2)cos(AB2)+12sin2(C2)\Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ } - C}}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)
2cos(1802C2)cos(AB2)+12sin2(C2)\Rightarrow \,\,\,2\cos \left( {\dfrac{{{{180}^ \circ }}}{2} - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)
2cos(90C2)cos(AB2)+12sin2(C2)\Rightarrow \,\,\,2\cos \left( {{{90}^ \circ } - \dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right) ----- (2)
By the ASTC rule (90θ)\left( {{{90}^ \circ } - \theta } \right) belongs to the first quadrant in that all six ratios are positive and
Let us by the complementary angles of trigonometric ratios:
The angle can be written as
sin(90θ)=cosθ\sin \left( {90 - \theta } \right) = \cos \theta
cos(90θ)=sinθ\cos \left( {90 - \theta } \right) = \sin \theta
Then equation (2) becomes
2sin(C2)cos(AB2)+12sin2(C2)\Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right) \cdot \cos \left( {\dfrac{{A - B}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)
Take 2sin(C2)2\sin \left( {\dfrac{C}{2}} \right) as common term, then we have
2sin(C2)(cos(AB2)sin(C2))+1\Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \sin \left( {\dfrac{C}{2}} \right)} \right) + 1
We already showed cos(A+B2)=sin(C2)\cos \left( {\dfrac{{A + B}}{2}} \right) = \sin \left( {\dfrac{C}{2}} \right), then
2sin(C2)(cos(AB2)cos(A+B2))+1\Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {\cos \left( {\dfrac{{A - B}}{2}} \right) - \cos \left( {\dfrac{{A + B}}{2}} \right)} \right) + 1 ---- (3)
Again by the sum to product formula
cosACosB=2sin(A+B2)sin(AB2)\cos A - \operatorname{Cos} B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right) \cdot \sin \left( {\dfrac{{A - B}}{2}} \right)
Or
cos(A+B2)Cos(A+B2)=2sin(A2)sin(B2)\cos \left( {\dfrac{{A + B}}{2}} \right) - \operatorname{Cos} \left( {\dfrac{{A + B}}{2}} \right) = - 2\sin \left( {\dfrac{A}{2}} \right) \cdot \sin \left( {\dfrac{B}{2}} \right)
Then equation (3) becomes
2sin(C2)(2sin(A2)sin(B2))+1\Rightarrow \,\,\,2\sin \left( {\dfrac{C}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1
Then on simplification, we get
4sin(A2)sin(B2)sin(C2)+1\therefore \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1
Hence, the required value is
So, the correct answer is “4sin(A2)sin(B2)sin(C2)+1 \,\,\,4\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) + 1”.

Note : When solving the trigonometry-based questions, we have to know the definitions of six trigonometric ratios. Remember, the sum to product formula of trigonometry i.e.,
sinA±sinB=2sin(A±B2)cos(AB2)\sin A \pm \sin B = 2\sin \left( {\dfrac{{A \pm B}}{2}} \right)\cos \left( {\dfrac{{A \mp B}}{2}} \right)
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)
cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)