Solveeit Logo

Question

Question: If A, B, C are the angle of a triangle then the value of determinant \(\left| \begin{matrix} \sin 2...

If A, B, C are the angle of a triangle then the value of

determinant sin2AsinCsinBsinCsin2BsinAsinBsinAsin2C\left| \begin{matrix} \sin 2A & \sin C & \sin B \\ \sin C & \sin 2B & \sin A \\ \sin B & \sin A & \sin 2C \end{matrix} \right| is –

A

π

B

C

0

D

None of these

Answer

0

Explanation

Solution

sin2AsinCsinBsinCsin2BsinAsinBsinAsin2C\left| \begin{matrix} \sin 2A & \sin C & \sin B \\ \sin C & \sin 2B & \sin A \\ \sin B & \sin A & \sin 2C \end{matrix} \right|

= sinAcosA0sinBcosB0sinCcosC0\left| \begin{array} { l l l } \sin A & \cos A & 0 \\ \sin B & \cos B & 0 \\ \sin C & \cos C & 0 \end{array} \right| cosAsinA0cosBsinB0cosCsinC0\left| \begin{matrix} \cos A & \sin A & 0 \\ \cos B & \sin B & 0 \\ \cos C & \sin C & 0 \end{matrix} \right|= 0