Solveeit Logo

Question

Question: If a, b, c are real numbers then the value of \[\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac...

If a, b, c are real numbers then the value of limt0ln(1t0t(1+asinbx)cxdx)\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac{1}{t}\int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right).
A) abcabc B) abc\dfrac{ab}{c} C) bca\dfrac{bc}{a} D) cab\dfrac{ca}{b}

Explanation

Solution

Hint: Use Leibniz Rule and L Hopital’s Rule for evaluating the limit.

Complete step-by-step answer:
We know that limxaln(f(x))\underset{x\to a}{\mathop{\lim }}\,\ln (f(x))=ln(limxa(f(x)))\ln \left( \underset{x\to a}{\mathop{\lim }}\,(f(x)) \right).
So,
limt0ln(1t0t(1+asinbx)cxdx)\underset{t\to 0}{\mathop{\lim }}\,\ln \left( \dfrac{1}{t}\int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)
00(1+asinbx)cxdx0\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}
If we substitutett as 00 in the limit we get,
00(1+asinbx)cxdx0\dfrac{\int\limits_{0}^{0}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx}{0}
We know thataaf(x)dx=0\int\limits_{a}^{a}{f(x)dx=0}. Therefore, the numerator tends to 00.
L=00L=\dfrac{0}{0}
The numerator and denominator tend to 00 as tt tends to 00, so the limit is of the form 00\dfrac{0}{0}. So we can use L’Hopital’s Rule i.e. differentiating the numerator and denominator separately to evaluate the limit.
We can now evaluate the numerator using Leibniz’s Rule i.e.
\dfrac{d}{dx}\left( \mathop{\int }_{b\left( x \right)}^{a\left( x \right)}f\left( x \right)dx \right)=\left\\{ f\left( a\left( x \right) \right)~a'\left( x \right) \right\\}-\left\\{ f\left( b\left( x \right) \right)b'\left( x \right) \right\\}
Where a(x)a'\left( x \right)and b(x)b'\left( x \right) are derivatives of functions a(x)a\left( x \right)and b(x)b\left( x \right)with respect to xx.
So,
ddt(0t(1+asinbx)cxdx)=(1+asinbt)ct(1)(1+asinb(0))c0(0)\dfrac{d}{dt}\left( \int\limits_{0}^{t}{{{(1+a\sin bx)}^{\dfrac{c}{x}}}}dx \right)={{(1+a\sin bt)}^{\dfrac{c}{t}}}(1)-{{(1+a\sin b(0))}^{\dfrac{c}{0}}}(0)
=(1+asinbt)ct={{(1+a\sin bt)}^{\dfrac{c}{t}}}
The denominator equals to 11 asddt(t)=1\dfrac{d}{dt}(t)=1.
So, our limit now equals,
ln(limt0(1+asinbt)ct)\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{c}{t}}} \right)
This limit is of the form 1{{1}^{\infty }} because asinbta\sin bt tends to 00 as tt tends to 00 and ct\dfrac{c}{t} tends to ++\infty as tt tends to 00.
Limits of this form can be resolve by using limx0(1+f(x))1f(x)=e\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1+f(x) \right)}^{\dfrac{1}{f(x)}}}=e if f(x)f\left( x \right)tends to 00 as xx tends to 00.
So, writing our question in this format
=ln(limt0(1+asinbt)1asinbtcasinbtt)=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{(1+a\sin bt)}^{\dfrac{1}{a\sin bt}\dfrac{ca\sin bt}{t}}} \right)
=ln(limt0ecasinbtt)=\ln \left( \underset{t\to 0}{\mathop{\lim }}\,{{e}^{\dfrac{ca\sin bt}{t}}} \right)
Also we know that limx0sinkxkx=k\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k. We can prove this by using L’Hopital Rule and differentiating the numerator and denominator. So our limit becomes,
ln(eabc)\ln \left( {{e}^{abc}} \right)
We know that ln(ex)=x\ln \left( {{e}^{x}} \right)=x
Therefore,
=abc=abc
This is option A)abcabc
Answer is option A)abcabc.

Note: Students must be familiar with the common limit forms like 1{{1}^{\infty }}, 00\dfrac{0}{0}. Also they must be comfortable to use L’Hopital Rule and Leibniz Rule. They must also know the standard limits likelimx0sinkxkx=k\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin kx}{kx}=k.