Solveeit Logo

Question

Question: If a, b, c are positive real numbers such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1$, then t...

If a, b, c are positive real numbers such that 1a+1b+1c=1\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1, then the minimum value of (a - 1)(b - 1)(c - 1) is

A

6

B

8

C

1

D

3

Answer

8

Explanation

Solution

Let X=a,Y=b,Z=cX=a, Y=b, Z=c. The condition 1X+1Y+1Z=1\frac{1}{X} + \frac{1}{Y} + \frac{1}{Z} = 1 implies XY+YZ+ZX=XYZXY+YZ+ZX = XYZ. The expression (X1)(Y1)(Z1)(X-1)(Y-1)(Z-1) expands to XYZ(XY+YZ+ZX)+(X+Y+Z)1XYZ - (XY+YZ+ZX) + (X+Y+Z) - 1. Substituting XY+YZ+ZX=XYZXY+YZ+ZX = XYZ, the expression simplifies to X+Y+Z1X+Y+Z-1. By Cauchy-Schwarz inequality, (X+Y+Z)(1X+1Y+1Z)9(X+Y+Z)(\frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}) \ge 9. With the given condition, X+Y+Z9X+Y+Z \ge 9. Thus, the minimum value of the expression is 91=89-1=8.