Solveeit Logo

Question

Question: If a, b, c are non zero real numbers then \(\left| \begin{matrix} b^{2}c^{2} & bc & b + c \\ c^{2}a...

If a, b, c are non zero real numbers then

b2c2bcb+cc2a2cac+aa2b2aba+b\left| \begin{matrix} b^{2}c^{2} & bc & b + c \\ c^{2}a^{2} & ca & c + a \\ a^{2}b^{2} & ab & a + b \end{matrix} \right| is equal to

A

abc

B

a2b2c2

C

ab + bc + ca

D

None

Answer

None

Explanation

Solution

1abcab2c2abcab+acbc2a2bcabc+baca2b2cabca+cb\frac{1}{abc}\left| \begin{matrix} ab^{2}c^{2} & abc & ab + ac \\ bc^{2}a^{2} & bca & bc + ba \\ ca^{2}b^{2} & cab & ca + cb \end{matrix} \right|

=(abc)2abcbc1ab+acca1bc+baca1ca+cb\frac{(abc)^{2}}{abc}\left| \begin{matrix} bc & 1 & ab + ac \\ ca & 1 & bc + ba \\ ca & 1 & ca + cb \end{matrix} \right| = 0

(Now applying C3 ® C3 + C1 and taking common

ab + bc + ac)