Solveeit Logo

Question

Question: If a, b, c are non-zero real numbers, then \(\left| \begin{matrix} bc & ca & ab \\ ca & ab & bc \\ a...

If a, b, c are non-zero real numbers, then bccaabcaabbcabbcca\left| \begin{matrix} bc & ca & ab \\ ca & ab & bc \\ ab & bc & ca \end{matrix} \right|vanishes when,

A

1a\frac{1}{a}1b\frac{1}{b}1c\frac{1}{c} = 0

B

1a\frac{1}{a}+ 1b\frac{1}{b} + 1c\frac{1}{c}= 0

C

1b\frac{1}{b}1c\frac{1}{c}1a\frac{1}{a} = 0

D

1b\frac{1}{b}1c\frac{1}{c}1a\frac{1}{a} = 0

Answer

1a\frac{1}{a}+ 1b\frac{1}{b} + 1c\frac{1}{c}= 0

Explanation

Solution

bccaabcaabbcabbcca\left| \begin{matrix} bc & ca & ab \\ ca & ab & bc \\ ab & bc & ca \end{matrix} \right| = 0

3a2b2c2 – [(ab)3 + (bc)3 + (ca)3] = 0

Ž (ab + bc + ca) (a2b2 + b2c2 + c2a2 – ab2c – bc2a – ca2b) = 0 Ž ab + bc + ca = 0 Ž 1a\frac{1}{a}+ 1b\frac{1}{b} + 1c\frac{1}{c} = 0