Solveeit Logo

Question

Question: If a, b, c are non zero real numbers; then \(\left| \begin{array} { l l l } \mathrm { bc } & \mathr...

If a, b, c are non zero real numbers; then bccaabcaabacabbcca\left| \begin{array} { l l l } \mathrm { bc } & \mathrm { ca } & \mathrm { ab } \\ \mathrm { ca } & \mathrm { ab } & \mathrm { ac } \\ \mathrm { ab } & \mathrm { bc } & \mathrm { ca } \end{array} \right| = 0

when –

A

1a\frac { 1 } { \mathrm { a } } + 1 b\frac { 1 } { \mathrm {~b} } + = 0

B

1a\frac { 1 } { \mathrm { a } } = + 1c\frac { 1 } { \mathrm { c } }

C

1 b\frac { 1 } { \mathrm {~b} } = 1a\frac { 1 } { \mathrm { a } } + 1c\frac { 1 } { \mathrm { c } }

D

None of these

Answer

1a\frac { 1 } { \mathrm { a } } + 1 b\frac { 1 } { \mathrm {~b} } + = 0

Explanation

Solution

Let C1 → C1 + C2 + C3

bc+ca+abcaabbc+ca+ababbcbc+ca+abbcca\left| \begin{matrix} bc + ca + ab & ca & ab \\ bc + ca + ab & ab & bc \\ bc + ca + ab & bc & ca \end{matrix} \right| = 0

∴ bc + ca + ab = 0

1a\frac{1}{a} + 1b\frac{1}{b} + 1c\frac{1}{c} = 0.