Solveeit Logo

Question

Question: If a, b, c are non-zero no.'s, then \(\left| \begin{matrix} b^{2}c^{2} & bc & b + c \\ c^{2}a^{2} & ...

If a, b, c are non-zero no.'s, then b2c2bcb+cc2a2cac+aa2b2aba+b\left| \begin{matrix} b^{2}c^{2} & bc & b + c \\ c^{2}a^{2} & ca & c + a \\ a^{2}b^{2} & ab & a + b \end{matrix} \right|is equal to-

A

abc

B

a2b2c2

C

ab + bc + ca

D

None of these

Answer

None of these

Explanation

Solution

1abc\frac{1}{abc} ab2c2abcab+acbc2a2abcbc+aba2b2cabcac+bc\left| \begin{matrix} ab^{2}c^{2} & abc & ab + ac \\ bc^{2}a^{2} & abc & bc + ab \\ a^{2}b^{2}c & abc & ac + bc \end{matrix} \right|

=bc1ab+acac1bc+abab1ac+bc\left| \begin{matrix} bc & 1 & ab + ac \\ ac & 1 & bc + ab \\ ab & 1 & ac + bc \end{matrix} \right|= abc bc1ab+bc+caac1ab+bc+caab1ab+bc+ca\left| \begin{matrix} bc & 1 & ab + bc + ca \\ ac & 1 & ab + bc + ca \\ ab & 1 & ab + bc + ca \end{matrix} \right| = 0