Solveeit Logo

Question

Question: If **a**, **b**, **c** are mutually perpendicular vectors of equal magnitudes, then the angle betwee...

If a, b, c are mutually perpendicular vectors of equal magnitudes, then the angle between the vectors a and a+b+c\mathbf { a } + \mathbf { b } + \mathbf { c } is

A

π3\frac { \pi } { 3 }

B

π6\frac { \pi } { 6 }

C

cos113\cos ^ { - 1 } \frac { 1 } { \sqrt { 3 } }

D

π2\frac { \pi } { 2 }

Answer

cos113\cos ^ { - 1 } \frac { 1 } { \sqrt { 3 } }

Explanation

Solution

Since a,b\mathbf { a } , \mathbf { b } and are mutually perpendicular, so ab=bc=ca=0\mathbf { a } \cdot \mathbf { b } = \mathbf { b } \cdot \mathbf { c } = \mathbf { c } \cdot \mathbf { a } = 0

Angle between a\mathbf { a } and a+b+c\mathbf { a } + \mathbf { b } + \mathbf { c } is cosθ=a(a+b+c)aa+b+c\cos \theta = \frac { \mathbf { a } \cdot ( \mathbf { a } + \mathbf { b } + \mathbf { c } ) } { | \mathbf { a } \| \mathbf { a } + \mathbf { b } + \mathbf { c } | } .....(i)

Now abc=a| \mathbf { a } | \neq \mathbf { b } | \neq \mathbf { c } | = a

a+b+c2=a2+b2+c2+2ab+2bc+2ca| \mathbf { a } + \mathbf { b } + \mathbf { c } | ^ { 2 } = \mathbf { a } ^ { 2 } + \mathbf { b } ^ { 2 } + \mathbf { c } ^ { 2 } + 2 \mathbf { a } \cdot \mathbf { b } + 2 \mathbf { b } \cdot \mathbf { c } + 2 \mathbf { c } \cdot \mathbf { a }

=a2+a2+a2+0+0+0= a ^ { 2 } + a ^ { 2 } + a ^ { 2 } + 0 + 0 + 0

a+b+c2=3a2a+b+c=3a| \mathbf { a } + \mathbf { b } + \mathbf { c } | ^ { 2 } = 3 a ^ { 2 } \Rightarrow \mathbf { a } + \mathbf { b } + \mathbf { c } \mid = \sqrt { 3 } a

Putting this value in (i), we get θ=cos113\theta = \cos ^ { - 1 } \frac { 1 } { \sqrt { 3 } }.