Solveeit Logo

Question

Question: If **a**, **b**, **c** are mutually perpendicular unit vectors, then \(|\mathbf{a} + \mathbf{b} + \m...

If a, b, c are mutually perpendicular unit vectors, then a+b+c=|\mathbf{a} + \mathbf{b} + \mathbf{c}| =

A

3\sqrt{3}

B

3

C

1

D

0

Answer

3\sqrt{3}

Explanation

Solution

Three mutually perpendicular unit vectors =a= \mathbf{a}, b\mathbf{b}and c\mathbf{c}.

Therefore a=b=c=1|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1 and a.b=b.c=c.a=0\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a} = 0.

We know that

a+b+c2=(a+b+c).(a+b+c)=a2+b2|\mathbf{a} + \mathbf{b} + \mathbf{c}|^{2} = (\mathbf{a} + \mathbf{b} + \mathbf{c}).(\mathbf{a} + \mathbf{b} + \mathbf{c}) = |\mathbf{a}|^{2} + |\mathbf{b}|^{2}

+c2+2(a.b+b.c+c.a)=1+1+1+0=3+ |\mathbf{c}|^{2} + 2(\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a}) = 1 + 1 + 1 + 0 = 3

or a+b+c=3.|\mathbf{a} + \mathbf{b} + \mathbf{c}| = \sqrt{3}.