Solveeit Logo

Question

Question: If a, b, c are in H.P. , then the value of\(\frac{b + a}{b - a} + \frac{b + c}{b - c}\)is...

If a, b, c are in H.P. , then the value ofb+aba+b+cbc\frac{b + a}{b - a} + \frac{b + c}{b - c}is

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

a, b, c are in H.P. ⇒ b = 2aca+c\frac{2ac}{a + c}ba=2ca+c\frac{b}{a} = \frac{2c}{a + c}

b+aba=3c+aca\frac{b + a}{b - a} = \frac{3c + a}{c - a}.……(1)

Again a, b, c are in H.P.

⇒ b = 2aca+c\frac{2ac}{a + c}bc=2aa+c\frac{b}{c} = \frac{2a}{a + c}

b+cbc=3a+cac\frac{b + c}{b - c} = \frac{3a + c}{a - c}.……(2)

From (1) and (2),

b+aba+b+cbc=3c+aca+3a+cac\frac{b + a}{b - a} + \frac{b + c}{b - c} = \frac{3c + a}{c - a} + \frac{3a + c}{a - c}=2.

Hence (3) is the correct answer.

Alternative solution:

We have b+aba+b+cbc=2a+2b2a2b+2c+2b2c2b\frac{b + a}{b - a} + \frac{b + c}{b - c} = \frac{\frac{2}{a} + \frac{2}{b}}{\frac{2}{a} - \frac{2}{b}} + \frac{\frac{2}{c} + \frac{2}{b}}{\frac{2}{c} - \frac{2}{b}}

= 3a+1c1a1c+3c+1a1c1a=2a2c1a1c=2\frac{\frac{3}{a} + \frac{1}{c}}{\frac{1}{a} - \frac{1}{c}} + \frac{\frac{3}{c} + \frac{1}{a}}{\frac{1}{c} - \frac{1}{a}} = \frac{\frac{2}{a} - \frac{2}{c}}{\frac{1}{a} - \frac{1}{c}} = 2