Solveeit Logo

Question

Question: If a, b, c are in harmonic progression, then straight line \(\frac { x } { a } + \frac { y } { b } +...

If a, b, c are in harmonic progression, then straight line xa+yb+1c=0\frac { x } { a } + \frac { y } { b } + \frac { 1 } { c } = 0 always passes through a fixed point, that point is.

A

(1,2)( - 1 , - 2 )

B

(1,2)( - 1,2 )

C

(1,2)( 1 , - 2 )

D

(1,1/2)( 1 , - 1 / 2 )

Answer

(1,2)( 1 , - 2 )

Explanation

Solution

a, b, c are in H. P., then 2b=1a+1c\frac { 2 } { b } = \frac { 1 } { a } + \frac { 1 } { c } .....(i)

Given line is xa+yb+1c=0\frac { x } { a } + \frac { y } { b } + \frac { 1 } { c } = 0 .....(ii)

Subtracting both 1a(x1)+1b(y+2)=0\frac { 1 } { a } ( x - 1 ) + \frac { 1 } { b } ( y + 2 ) = 0

Since a0,b0a \neq 0 , b \neq 0

So, (x1)=0x=1( x - 1 ) = 0 \Rightarrow x = 1 and (y+2)=0y=2( y + 2 ) = 0 \Rightarrow y = - 2 .

Trick : Checking from options, let a, b, c are 11,12,13\frac { 1 } { 1 } , \frac { 1 } { 2 } , \frac { 1 } { 3 } .

Then x+2y+3=0x + 2 y + 3 = 0will satisfy (3) option.