Solveeit Logo

Question

Question: If a, b, c are in G.P, then the equations ax<sup>2</sup> + 2bx + c = 0 and dx<sup>2</sup> + 2ex + f ...

If a, b, c are in G.P, then the equations ax2 + 2bx + c = 0 and dx2 + 2ex + f = 0 have a common root if da,⥄⥄eb,⥄⥄fc\frac{d}{a}, ⥄ ⥄ \frac{e}{b}, ⥄ ⥄ \frac{f}{c} are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

A.P.

Explanation

Solution

a, b, c are in G. P ⇒ b2 = ac.

Now the equation ax2 + 2bx + c = 0 can be rewritten as

ax2 + 2ac\sqrt{ac}x + c = 0 ⇒ (a\sqrt{a}x +c\sqrt{c})2 = 0 ⇒ x = –ca\sqrt{\frac{c}{a}}.

If the two given equations have a common root, then this root must be

ca\sqrt{\frac{c}{a}}. Thus dca2eca+f=0\frac{c}{a} - 2e\sqrt{\frac{c}{a}} + f = 0

da+fc=2ecca=2eac=2eb\frac{d}{a} + \frac{f}{c} = \frac{2e}{c\sqrt{\frac{c}{a}} = \frac{2e}{\sqrt{ac}} = \frac{2e}{b}}da,eb,fc\frac{d}{a},\frac{e}{b},\frac{f}{c} are in A. P