Solveeit Logo

Question

Question: If a, b, c are in G.P. then the equations \(ax^{2} + 2bx + c = 0\) and \(dx^{2} + 2ex + f = 0\) have...

If a, b, c are in G.P. then the equations ax2+2bx+c=0ax^{2} + 2bx + c = 0 and dx2+2ex+f=0dx^{2} + 2ex + f = 0 have a common root if da,eb,fc\frac{d}{a},\frac{e}{b},\frac{f}{c} are in

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

A.P.

Explanation

Solution

As given, b2=acb^{2} = acax2+2bx+c=0ax^{2} + 2bx + c = 0 can be written as ax2+2acx+c=0ax^{2} + 2\sqrt{ac}x + c = 0(ax+c)2=0(\sqrt{a}x + \sqrt{c})^{2} = 0x=cax = - \sqrt{\frac{c}{a}}

This must be common root by hypothesis

So it must satisfy the equation, dx2+2ex+f=0dx^{2} + 2ex + f = 0

d(ca)2eca+f=0d\left( \frac{c}{a} \right) - 2e\sqrt{\frac{c}{a}} + f = 0

da+\frac{d}{a} +da+fc=2eb\frac{d}{a} + \frac{f}{c} = \frac{2e}{b}

Hence da,eb,fc\frac{d}{a},\frac{e}{b},\frac{f}{c} are in A.P.