Solveeit Logo

Question

Question: If \(a , b , c\) are in G.P., then....

If a,b,ca , b , c are in G.P., then.

A

a(b2+a2)=c(b2+c2)a \left( b ^ { 2 } + a ^ { 2 } \right) = c \left( b ^ { 2 } + c ^ { 2 } \right)

B

a(b2+c2)=c(a2+b2)a \left( b ^ { 2 } + c ^ { 2 } \right) = c \left( a ^ { 2 } + b ^ { 2 } \right)

C

a2(b+c)=c2(a+b)a ^ { 2 } ( b + c ) = c ^ { 2 } ( a + b )

D

None of these

Answer

a(b2+c2)=c(a2+b2)a \left( b ^ { 2 } + c ^ { 2 } \right) = c \left( a ^ { 2 } + b ^ { 2 } \right)

Explanation

Solution

If a,b,ca , b , c are in G.P. Then b2=acb ^ { 2 } = a c

\Rightarrow b2(ac)=ac(ac)b ^ { 2 } ( a - c ) = a c ( a - c ) \Rightarrow b2ab2c=a2cac2b ^ { 2 } a - b ^ { 2 } c = a ^ { 2 } c - a c ^ { 2 }

\Rightarrow a(b2+c2)=c(a2+b2)a \left( b ^ { 2 } + c ^ { 2 } \right) = c \left( a ^ { 2 } + b ^ { 2 } \right) .

Trick : Put a=1,b=2,c=4a = 1 , b = 2 , c = 4 and check the alternates.