Solveeit Logo

Question

Mathematics Question on Sequence and series

If a, b, c are in G.P. then 1a2b2+1b2\frac{1}{a^2 - b^2} + \frac{1}{b^2} is:

A

1c2b2\frac{1}{c^2 - b^2}

B

1b2c2\frac{1}{b^2 - c^2}

C

1c2a2\frac{1}{c^2 - a^2}

D

1b2a2\frac{1}{b^2 - a^2}

Answer

1b2c2\frac{1}{b^2 - c^2}

Explanation

Solution

As given : a, b, c are in G.P. b2=ac\Rightarrow b^{2 } = ac The given expression : 1a2b2+1b2\frac{1}{a^{2} - b^{2}} + \frac{1}{b^{2}} =1a2ac+1ac= \frac{1}{a^{2} -ac} + \frac{1}{ac} [using b2=acb^2 = ac ] =1a(ac)+1ac=c+acac(ac)= \frac{1}{a\left(a-c\right) } + \frac{1}{ac} = \frac{c+a-c}{ac\left(a-c\right)} =aac(ac)=1acc2=1b2c2= \frac{a}{ac\left(a-c\right)} = \frac{1}{ac -c^{2}} = \frac{1}{b^{2} -c^{2}} [using ac=b2ac = b^2]