Solveeit Logo

Question

Question: If a, b, c are in G.P., then A. \({{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,...

If a, b, c are in G.P., then
A. a2,b2,c2{{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}} are in G.P.
B. a2(b + c),c2(a + b),b2(a + c){{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}} are in G.P.
C. ab + c,bc + a,ca + b\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}} are in G.P.
D. None of the above

Explanation

Solution

We’ll first write the conditional equation for a, b, c, and then will note the value of b and c in terms of a and common ratio to create a relation in a, b, c and then will find the required answer with help of those equations.

Complete step by step answer:

Given data: a, b, c are in G.P.
From the given data i.e. a, b, c are in G.P., we can say that the common ratio will remain the same
ba = cb..............(i) b2 = ac.........(ii)  \dfrac{{\text{b}}}{{\text{a}}}{\text{ = }}\dfrac{{\text{c}}}{{\text{b}}}..............{\text{(i)}} \\\ \Rightarrow {{\text{b}}^{\text{2}}}{\text{ = ac}}.........{\text{(ii)}} \\\
Let the common ratio be ‘r’
b = ar\therefore {\text{b = ar}}
Squaring both sides of the above equation
b2 = (ar)2 b2 = a2r2  {{\text{b}}^{\text{2}}}{\text{ = }}{\left( {{\text{ar}}} \right)^{\text{2}}} \\\ \Rightarrow {{\text{b}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{2}}} \\\
Also,c = ar2{\text{c = a}}{{\text{r}}^{\text{2}}}
Squaring both sides of the above equation
c2 = (ar2)2 c2 = a2r4  {{\text{c}}^{\text{2}}}{\text{ = }}{\left( {{\text{a}}{{\text{r}}^{\text{2}}}} \right)^{\text{2}}} \\\ \Rightarrow {{\text{c}}^{\text{2}}}{\text{ = }}{{\text{a}}^{\text{2}}}{{\text{r}}^{\text{4}}} \\\
From the value of a2,b2,c2{{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}} we can see that they are in G.P. with a common ratio of r2{\text{'}}{{\text{r}}^{\text{2}}}{\text{'}}
Common ratio=b2a2 = c2b2 = r2\dfrac{{{{\text{b}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}{\text{ = }}\dfrac{{{{\text{c}}^{\text{2}}}}}{{{{\text{b}}^{\text{2}}}}}{\text{ = }}{{\text{r}}^{\text{2}}}
Therefore, option(A) is correct

Note: We can also verify our solution with the help of an example let say 2,4,8 where
a=2
b=4
c=8
for option(A) a2,b2,c2{{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}=4,16,64{\text{4,16,64}}
since 164 = 6416 = 4\dfrac{{{\text{16}}}}{{\text{4}}}{\text{ = }}\dfrac{{{\text{64}}}}{{{\text{16}}}}{\text{ = 4}}
therefore, a2,b2,c2{{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}}are in G.P.
(A)a2,b2,c2{{\text{a}}^{\text{2}}}{\text{,}}{{\text{b}}^{\text{2}}}{\text{,}}{{\text{c}}^{\text{2}}} are in G.P.
Therefore option (A) is correct
for option(B) a2(b + c),c2(a + b),b2(a + c){{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}=22(4 + 8),82(2 + 4),42(2 + 8){{\text{2}}^{\text{2}}}{\text{(4 + 8),}}{{\text{8}}^{\text{2}}}{\text{(2 + 4),}}{{\text{4}}^{\text{2}}}{\text{(2 + 8)}}
48,386,160{\text{48,386,160}}
since 38648 = 19324160386 = 80193\dfrac{{{\text{386}}}}{{{\text{48}}}}{\text{ = }}\dfrac{{{\text{193}}}}{{{\text{24}}}} \ne \dfrac{{{\text{160}}}}{{{\text{386}}}}{\text{ = }}\dfrac{{{\text{80}}}}{{{\text{193}}}}
therefore, a2(b + c),c2(a + b),b2(a + c){{\text{a}}^{\text{2}}}{\text{(b + c),}}{{\text{c}}^{\text{2}}}{\text{(a + b),}}{{\text{b}}^{\text{2}}}{\text{(a + c)}}are not in G.P.
for option(C) ab + c,bc + a,ca + b\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}=24 + 8,48 + 2,82 + 4\dfrac{{\text{2}}}{{{\text{4 + 8}}}}{\text{,}}\dfrac{{\text{4}}}{{{\text{8 + 2}}}}{\text{,}}\dfrac{{\text{8}}}{{{\text{2 + 4}}}}
16,25,43\dfrac{{\text{1}}}{{\text{6}}}{\text{,}}\dfrac{{\text{2}}}{{\text{5}}}{\text{,}}\dfrac{{\text{4}}}{{\text{3}}}
since 2516 = 1254325 = 103\dfrac{{\dfrac{{\text{2}}}{{\text{5}}}}}{{\dfrac{{\text{1}}}{{\text{6}}}}}{\text{ = }}\dfrac{{{\text{12}}}}{{\text{5}}} \ne \dfrac{{\dfrac{{\text{4}}}{{\text{3}}}}}{{\dfrac{{\text{2}}}{{\text{5}}}}}{\text{ = }}\dfrac{{{\text{10}}}}{{\text{3}}}
therefore, ab + c,bc + a,ca + b\dfrac{{\text{a}}}{{{\text{b + c}}}}{\text{,}}\dfrac{{\text{b}}}{{{\text{c + a}}}}{\text{,}}\dfrac{{\text{c}}}{{{\text{a + b}}}}are not in G.P.