Solveeit Logo

Question

Mathematics Question on Sequence and series

If a,b,ca, b, c are in G.P and xa=yb=zcx^a = y^b = z^c, then

A

logyx=logzy \log_y \, x = \log_z \, y

B

logxy=logzy \log_x \, y = \log_z \, y

C

logzb=logcb \log_z \, b = \log_c \,b

D

logba=logcb \log_b \, a = \log_c \, b

Answer

logyx=logzy \log_y \, x = \log_z \, y

Explanation

Solution

Taking log\log in xa=yb=zcx^a = y^b = z^c
alogx=blogy=clogza \, \log \: x = b \, \log \,y = c \, \log \, z
logxlogy=ba,logylogz=cb\frac{ \log \, x}{\log \,y} = \frac{b}{a} , \frac{\log \,y}{\log \, z} = \frac{c}{b}
a,b,c\because \:\: a,b,c are in G.P,. ba=cb\:\:\: \therefore \frac{b}{a} = \frac{c}{b}
logxlogy=logylogzlogyx=logzy\therefore \frac{ \log \, x}{\log \,y} = \frac{\log \,y}{\log \, z } \Rightarrow \: \log_y x = \log_z y