Solveeit Logo

Question

Question: If a, b, c, are in A.P, then the determinant $\begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \...

If a, b, c, are in A.P, then the determinant x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c\begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix} is

A

0

B

1

C

x

D

2x

Answer

0

Explanation

Solution

To evaluate the given determinant: Δ=x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}

We are given that a, b, c are in A.P. (Arithmetic Progression). This means that the common difference is constant, so ba=cbb-a = c-b, which implies 2b=a+c2b = a+c.

Let's apply row operations to simplify the determinant.

Step 1: Apply Row Operations R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1. This operation will simplify the first two columns, which are in A.P. Δ=x+2x+3x+2a(x+3)(x+2)(x+4)(x+3)(x+2b)(x+2a)(x+4)(x+2)(x+5)(x+3)(x+2c)(x+2a)\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ (x+3)-(x+2) & (x+4)-(x+3) & (x+2b)-(x+2a) \\ (x+4)-(x+2) & (x+5)-(x+3) & (x+2c)-(x+2a) \end{vmatrix} Simplifying the elements: Δ=x+2x+3x+2a112b2a222c2a\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ 1 & 1 & 2b-2a \\ 2 & 2 & 2c-2a \end{vmatrix}

Step 2: Apply Row Operation R3R32R2R_3 \to R_3 - 2R_2. This operation will simplify the third row further. Δ=x+2x+3x+2a112b2a22(1)22(1)(2c2a)2(2b2a)\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ 1 & 1 & 2b-2a \\ 2-2(1) & 2-2(1) & (2c-2a)-2(2b-2a) \end{vmatrix} Simplifying the elements: Δ=x+2x+3x+2a112b2a002c2a4b+4a\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ 1 & 1 & 2b-2a \\ 0 & 0 & 2c-2a-4b+4a \end{vmatrix} Δ=x+2x+3x+2a112b2a002a+2c4b\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ 1 & 1 & 2b-2a \\ 0 & 0 & 2a+2c-4b \end{vmatrix}

Step 3: Use the A.P. condition (2b=a+c2b = a+c). The element in the third row, third column is 2a+2c4b2a+2c-4b. Substitute a+c=2ba+c = 2b into this expression: 2a+2c4b=2(a+c)4b=2(2b)4b=4b4b=02a+2c-4b = 2(a+c) - 4b = 2(2b) - 4b = 4b - 4b = 0.

So, the determinant becomes: Δ=x+2x+3x+2a112b2a000\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ 1 & 1 & 2b-2a \\ 0 & 0 & 0 \end{vmatrix}

Step 4: Evaluate the determinant. A fundamental property of determinants states that if any row (or column) of a matrix consists entirely of zeros, then the value of its determinant is zero. In this case, the third row of the determinant consists entirely of zeros. Therefore, Δ=0\Delta = 0.