Solveeit Logo

Question

Question: If a, b, c are in A.P. then \(\mathrm { a } + \frac { 1 } { \mathrm { bc } } , \mathrm { b } + \fra...

If a, b, c are in A.P. then a+1bc,b+1ca,c+1ab\mathrm { a } + \frac { 1 } { \mathrm { bc } } , \mathrm { b } + \frac { 1 } { \mathrm { ca } } , \mathrm { c } + \frac { 1 } { \mathrm { ab } } are in:

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

A.P.

Explanation

Solution

a b c in AP

Sol. Divide by abc, 1bc,1ca,1ab\frac { 1 } { \mathrm { bc } } , \frac { 1 } { \mathrm { ca } } , \frac { 1 } { \mathrm { ab } } in A.P.

add by a, b, c respectively

a + 1bc,b+1ca,c+1ab\frac { 1 } { \mathrm { bc } } , \mathrm { b } + \frac { 1 } { \mathrm { ca } } , \mathrm { c } + \frac { 1 } { \mathrm { ab } } in A.P. (sum of two A.P.’s)