Solveeit Logo

Question

Question: If a, b, c are in A. P. then the value of \[ \begin{vmatrix} x+1 & x+2 & x+a \\[2pt] x+2 & x+3 & x+b...

If a, b, c are in A. P. then the value of

x+1x+2x+ax+2x+3x+bx+3x+4x+c\begin{vmatrix} x+1 & x+2 & x+a \\[2pt] x+2 & x+3 & x+b \\[2pt] x+3 & x+4 & x+c \end{vmatrix}

is:

Answer

0

Explanation

Solution

Step 1. Observe the first two columns differ by

[(x+2)(x+1),(x+3)(x+2),(x+4)(x+3)]T=[1,1,1]T.\bigl[(x+2)-(x+1),\,(x+3)-(x+2),\,(x+4)-(x+3)\bigr]^T=[1,1,1]^T.

Perform column operation C2C2C1C_2\to C_2-C_1:

x+11x+ax+21x+bx+31x+c.\begin{vmatrix} x+1 & 1 & x+a\\[2pt] x+2 & 1 & x+b\\[2pt] x+3 & 1 & x+c \end{vmatrix}.

Step 2. Expand along the 2nd column:

D=det ⁣(x+2x+bx+3x+c)+det ⁣(x+1x+ax+3x+c)det ⁣(x+1x+ax+2x+b).D=-\det\!\begin{pmatrix}x+2 & x+b\\ x+3 & x+c\end{pmatrix} +\det\!\begin{pmatrix}x+1 & x+a\\ x+3 & x+c\end{pmatrix} -\det\!\begin{pmatrix}x+1 & x+a\\ x+2 & x+b\end{pmatrix}.

Compute each minor using b=a+d, c=a+2db=a+d,\ c=a+2d: All coefficients of xx cancel, and the constant term becomes c+2ba-c+2b-a.
Since b=a+d, c=a+2db=a+d,\ c=a+2d,

c+2ba=(a+2d)+2(a+d)a=0.-c+2b-a=-(a+2d)+2(a+d)-a=0.

Hence D=0D=0.