Solveeit Logo

Question

Mathematics Question on Sequence and series

If a,b,ca, b, c are in A.P. in a2,b2,c2a^2, b^2, c^2 are in H.P., then

A

a=b=ca = b = c

B

2b=3a+c2b = 3a + c

C

b2=ac8b^2=\sqrt{\frac{ac}{8}}

D

none of these

Answer

a=b=ca = b = c

Explanation

Solution

Since a,b,ca,b, c are in A.PA.P. ba=cb...(1)\therefore b-a = c-b \quad...\left(1\right) Since a2,b2,c2a^{2}, b^{2}, c^{2} are in H.PH.P. 1b21a2=1c21b2\therefore \frac{1}{b^{2}} -\frac{1}{a^{2}} = \frac{1}{c^{2}}-\frac{1}{b^{2}} a2b2a2b2=b2c2b2c2\Rightarrow\frac{ a^{2}-b^{2}}{a^{2}b^{2}} =\frac{ b^{2}-c^{2}}{b^{2}c^{2}} (ab)(a+b)a2=(bc)(b+c)c2\Rightarrow \frac{\left(a-b\right)\left(a+b\right)}{a^{2}} = \frac{\left(b-c\right)\left(b+c\right)}{c^{2}} a+ba2=b+cc2 \Rightarrow \frac{a+b}{a^{2}} = \frac{b+c}{c^{2}} \quad [Using (1)(1)] ac2+bc2a2ba2c=0 \Rightarrow ac^{2} +bc^{2}-a^{2}b-a^{2}c= 0 ac2a2c+bc2ba2=0 \Rightarrow ac^{2}-a^{2}c+bc^{2}-ba^{2}=0 ac(ca)+b(c2a2)=0\Rightarrow ac\left(c-a\right)+b\left(c^{2}-a^{2}\right) = 0 (ca)(ac+b(c+a))=0\Rightarrow \left(c-a\right)\left(ac+b\left(c+a\right)\right) = 0 (ca)(ac+bc+ab)=0 \Rightarrow \left(c-a\right)\left(ac+bc+ab\right) =0 \Rightarrow either c=ac=a or ab+bc+ca=0ab+bc+ca = 0 If c=ac=a, from (1)ba=ab\left(1\right) b-a = a-b 2a=2b\Rightarrow 2a=2b a=b \Rightarrow a=b. Hence a=b=ca=b=c [ab+bc+ca=0b(a+c)=ca[ab+bc+ca=0 \Rightarrow b\left(a+c\right)= -ca b.2b=ca2b2=ca \Rightarrow b.2b= -ca \Rightarrow2b^{2} = -ca not possible if a,b,ca, b, c are+ve] +ve]