Solveeit Logo

Question

Question: If a, b, c are distinct positive numbers, each different from 1, such that \(\lbrack\log_{b}a\log_{c...

If a, b, c are distinct positive numbers, each different from 1, such that [logbalogcalogaa]+[logablogcblogbb]\lbrack\log_{b}a\log_{c}a - \log_{a}a\rbrack + \lbrack\log_{a}b\log_{c}b - \log_{b}b\rbrack

+[logaclogbclogcc]=0,+ \lbrack\log_{a}c\log_{b}c - \log_{c}c\rbrack = 0, then abc =

A

1

B

2

C

3

D

None of these

Answer

1

Explanation

Solution

[logba.logcalogaa]+[logab.logcblogbb]+[logaclogbclogcc]=0\lbrack\log_{b}a.\log_{c}a - \log_{a}a\rbrack + \lbrack\log_{a}b.\log_{c}b - \log_{b}b\rbrack + \lbrack\log_{a}c\log_{b}c - \log_{c}c\rbrack = 0

x=94x = \frac{9}{4}

1lna.lnb.lnc[(lna)3+(lnb)3+(lnc)33lna.lnb.lnc]=0\frac{1}{\ln a.\ln b.\ln c}\lbrack(\ln a)^{3} + (\ln b)^{3} + (\ln c)^{3} - 3\ln a.\ln b.\ln c\rbrack = 0

(lna)3+(lnb)3+(lnc)33lna.lnb.lnc=0(\ln a)^{3} + (\ln b)^{3} + (\ln c)^{3} - 3\ln a.\ln b.\ln c = 0

lna+lnb+lnc=0\ln a + \ln b + \ln c = 0

ln(abc)\ln(abc) = ln 1, [a3+b3+c33abc=0\lbrack a^{3} + b^{3} + c^{3} - 3abc = 0

a+b+c=0]a + b + c = 0\rbrack, abc=1\therefore abc = 1.