Solveeit Logo

Question

Mathematics Question on nth Term of an AP

If a,b,ca, b, c are distinct and the roots of (bc)x2+(ca)x+(ab)=0(b-c) x^{2}+(c-a) x+(a-b)=0 are equal, then a,ba, b and cc are in

A

arithmetic progression

B

geometric progression

C

harmonic progression

D

arithmetico-geometric progression

Answer

arithmetic progression

Explanation

Solution

Since, the given roots are equal
Now, D=0D=0
(ca)24(ab)(bc)=0\Rightarrow (c-a)^{2}-4(a-b)(b-c)=0
c2+a22ca4ab+4ac+4b2=0\Rightarrow c^{2}+a^{2}-2\, c a-4\, a b+4 a c+4 b^{2}=0
c2+a2+2ac+4b24b(c+a)=0\Rightarrow c^{2}+a^{2}+2\, a c+4 b^{2}-4 b(c+a)=0
(c+a)2+(2b)222b(c+a)=0\Rightarrow (c+a)^{2}+(2 b)^{2}-2 \cdot 2 b(c+a)=0
[(c+a)(2b)]2=0\Rightarrow [(c+a)-(2 b)]^{2}=0
c+a2b=0\Rightarrow c+a-2\, b=0
2b=a+c\Rightarrow 2\, b=a+c
Hence, a,ba, b and cc are in APA P.