Solveeit Logo

Question

Question: If **a**, **b**, **c** are coplanar vectors, then...

If a, b, c are coplanar vectors, then

A

abcbcacab=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{b} & \mathbf{c} & \mathbf{a} \\ \mathbf{c} & \mathbf{a} & \mathbf{b} \end{matrix} \right| = \mathbf{0}

B

abca.aa.ba.cb.ab.bb.c=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{c} \\ \mathbf{b}.\mathbf{a} & \mathbf{b}.\mathbf{b} & \mathbf{b}.\mathbf{c} \end{matrix} \right| = \mathbf{0}

C

abcc.ac.bc.cb.ab.cb.b=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{c}.\mathbf{a} & \mathbf{c}.\mathbf{b} & \mathbf{c}.\mathbf{c} \\ \mathbf{b}.\mathbf{a} & \mathbf{b}.\mathbf{c} & \mathbf{b}.\mathbf{b} \end{matrix} \right| = \mathbf{0}

D

abca.ba.aa.cc.ac.cc.b=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{c} \\ \mathbf{c}.\mathbf{a} & \mathbf{c}.\mathbf{c} & \mathbf{c}.\mathbf{b} \end{matrix} \right| = \mathbf{0}

Answer

abca.aa.ba.cb.ab.bb.c=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{c} \\ \mathbf{b}.\mathbf{a} & \mathbf{b}.\mathbf{b} & \mathbf{b}.\mathbf{c} \end{matrix} \right| = \mathbf{0}

Explanation

Solution

Since a,b\mathbf{a},\mathbf{b} and c\mathbf{c} are coplanar, therefore there exists (x,y,z(x,y,znot all zero) such that

xa+yb+zc=0x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = 0 .....(i)

Multiply be a\mathbf{a} scalarly, we get

x(a.a)+(a.b)+z(a.c)=0x(\mathbf{a}.\mathbf{a}) + (\mathbf{a}.\mathbf{b}) + z(\mathbf{a}.\mathbf{c}) = 0 ......(ii)

and x(a.b)+y(b.b)+z(b.c)=0x(\mathbf{a}.\mathbf{b}) + y(\mathbf{b}.\mathbf{b}) + z(\mathbf{b}.\mathbf{c}) = 0 .....(iii)

Eliminating x,yx,y and zz from (i), (ii) and (iii),

we get abca.aa.ba.ca.bb.bb.c=0\left| \begin{matrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{c} \\ \mathbf{a}.\mathbf{b} & \mathbf{b}.\mathbf{b} & \mathbf{b}.\mathbf{c} \end{matrix} \right| = 0.

Note: Students should remember this question as a formula.