Solveeit Logo

Question

Question: If A, B, C are angles of the triangle, then show that \( \tan A+\tan B+\tan C=\tan A\tan B\tan C \) ...

If A, B, C are angles of the triangle, then show that tanA+tanB+tanC=tanAtanBtanC\tan A+\tan B+\tan C=\tan A\tan B\tan C .

Explanation

Solution

Hint : We first use the identity of A+B+C=2πA+B+C=2\pi . Then we take the ratio tan on both sides to get tan(2π)=0\tan \left( 2\pi \right)=0 . We also use tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC\tan \left( A+B+C \right)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan A\tan C} . We put the values and prove it.

Complete step-by-step answer :
It is given that A, B, C are angles of the triangle. We know that the sum of three angles of a triangle is equal to 2π2\pi .
Therefore, we can write A+B+C=2πA+B+C=2\pi .
Now we have to prove that tanA+tanB+tanC=tanAtanBtanC\tan A+\tan B+\tan C=\tan A\tan B\tan C .
We take the trigonometric ratio of tan on both sides of the equation A+B+C=2πA+B+C=2\pi .
We get tan(A+B+C)=tan(2π)\tan \left( A+B+C \right)=\tan \left( 2\pi \right) . We apply the concept of associative angles.
For general form of tan(x)\tan \left( x \right) , we need to convert the value of x into the closest multiple of π2\dfrac{\pi }{2} and add or subtract a certain value α\alpha from that multiple of π2\dfrac{\pi }{2} to make it equal to x.
Let’s assume x=k×π2+αx=k\times \dfrac{\pi }{2}+\alpha , kZk\in \mathbb{Z} . Here we took the addition of α\alpha . We also need to remember that απ2\left| \alpha \right|\le \dfrac{\pi }{2} .
Now we take the value of k. If it’s even then keep the ratio as tan and if it’s odd then the ratio changes to cot ratio from tan.
Then we find the position of the given angle as quadrant value measured in counter clockwise movement from the origin and the positive side of X-axis.
If the angel falls in the first or third quadrant then the sign remains positive but if it falls in the second or fourth quadrant then the sign becomes negative.
The final form becomes tan(2π)=tan(2×π2+0)=tan(0)=0\tan \left( 2\pi \right)=\tan \left( 2\times \dfrac{\pi }{2}+0 \right)=\tan \left( 0 \right)=0 .
This gives tan(A+B+C)=tan(2π)=0\tan \left( A+B+C \right)=\tan \left( 2\pi \right)=0 .
We also know that tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC\tan \left( A+B+C \right)=\dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan A\tan C} .
tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanAtanC=0 tanA+tanB+tanCtanAtanBtanC=0 tanA+tanB+tanC=tanAtanBtanC \begin{aligned} & \dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan A\tan C}=0 \\\ & \Rightarrow \tan A+\tan B+\tan C-\tan A\tan B\tan C=0 \\\ & \Rightarrow \tan A+\tan B+\tan C=\tan A\tan B\tan C \\\ \end{aligned}
Thus, proved that tanA+tanB+tanC=tanAtanBtanC\tan A+\tan B+\tan C=\tan A\tan B\tan C .
So, the correct answer is “ tanA+tanB+tanC=tanAtanBtanC\tan A+\tan B+\tan C=\tan A\tan B\tan C ”.

Note : We need to be careful about the use of associative angles where the angles lie on the axes. We have to assume the angle either crosses the line or it hasn’t. We can't find the value assuming it is on the line.