Solveeit Logo

Question

Question: If A, B, C are angles of a triangle and \(\left| \begin{matrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin ...

If A, B, C are angles of a triangle and

1111+sinA1+sinB1+sinCsinA+sin2AsinB+sin2BsinC+sin2C\left| \begin{matrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^{2}A & \sin B + \sin^{2}B & \sin C + \sin^{2}C \end{matrix} \right| = 0 then

triangle ABC is

A

Right angled isosceles

B

Isosceles

C

Equilateral

D

n = 0

Answer

Isosceles

Explanation

Solution

R2® R2 – R1

111sinAsinBsinCsinA+sin2AsinB+sin2DsinC+sin2C\left| \begin{matrix} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin A + \sin^{2}A & \sin B + \sin^{2}D & \sin C + \sin^{2}C \end{matrix} \right|R3 ® R3 – R2

= 111sinAsinBsinCsin2Bsin2Bsin2C\left| \begin{matrix} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin^{2}B & \sin^{2}B & \sin^{2}C \end{matrix} \right|

= (sin A – sin B) × (sin B – sin C) × (sin C – sin A)

Ž Either A = B or B =C or C = A So D is isosceles