Question
Question: If a, b, c are all different and \(\left| \begin{matrix} a & a^{3} & a^{4} - 1 \\ b & b^{3} & b^{4} ...
If a, b, c are all different and abca3b3c3a4−1b4−1c4−1 = 0, then the value of abc(ab+bc+ca) is.
A
a+b+c
B
0
C
a2+b2+c2
D
a2−b2+c2
Answer
a+b+c
Explanation
Solution
abca3b3c3a4−1b4−1c4−1=0or abca3b3c3a4b4c4+abca3b3c3−1−1−1=0
or abc 111a2b2c2a3b3c3+aa−ba−ca3a3−b3a3−c3−100=0
or abc 100a2a2−b2a2−c2a3a3−b3a3−c3+aa−b(a−c)a3a3−b3(a3−c3)−100=0
or (abc)(a−b)(a−c)100a2a+ba+ca3a2+b2+aba2+c2+ac+
a & a^{3} & - 1 \\ 1 & a^{2} + b^{2} + ab & 0 \\ 1 & a^{2} + c^{2} + ac & 0 \end{matrix} \right|$$ or $(a - b)(a - c)\lbrack(abc)\lbrack(a + b)(a^{2} + c^{2} + ac) -$ $$(a + c)(a^{2} + b^{2} + ab)\rbrack\rbrack + ( - 1)(a - b)(a - c)$$ $$\lbrack a^{2} + c^{2} + ac - a^{2} - b^{2} - ab\rbrack = 0$$ = $(abc)\lbrack(a - b)(a - c)(c - b)(ac + ab + bc)\rbrack$ $$+ ( - 1)(a - b)(a - c)(c - b)(a + b + c) = 0$$ $\Rightarrow$ $(abc)(ac + ab + bc) = a + b + c$.