Question
Question: If A, B, C, are acute angles and \(\sin A = \cos A\) and \(\sin B\cos C + \cos B\sin C = \sin A\) th...
If A, B, C, are acute angles and sinA=cosA and sinBcosC+cosBsinC=sinA then tan A is equal to ?
(A) tanB+tanC
(B) 2(tanB+tanC)
(C) tanB+2tanC
(D) 2tanB+tanC
Solution
Hint : 1. Trigonometric ratios of (90∘−θ)
sin(90∘−θ)=cosθ
cos(90∘−θ)=sinθ
tan(90∘−θ)=cotθ
sec(90∘−θ)=cscθ
csc(90∘−θ)=secθ
cot(90∘−θ)=tanθ
2. Addition and subtraction of angles in sin
sin(A+B)=sinAcosB+cosAsinB
sin(A−B)=sinAcosB−cosAsinB
Complete step-by-step answer :
It is given that
1. sinA=cosB
2. sinBcosC+cosBsinC=sinA
Since sinA=cosB
Then sinA=sin(2π−B) (∵sin(90∘−θ)=cosθ)
So, A=2π−B
Or A+B=2π .….(1)
Now, we know that
sin(a+b)=sina×cosb+cosa×sinb
So, by using this formula we can say that
The given equation
sinBcosC+cosBsinC=sin(B+C)=sinA
Or, sin(B+C)=sinA
Taking tangent both side
tan(B+C)=tanA
or tanA=tan(B+C)
tanA=1−tanBtanCtanB+tanC
tanA−tanAtanBtanC=tanB+tanC
From equation (1) (A=2π−B)
tanA−tan(2π−B)tanBtanC=tanB+tanC
tanA−cotB.tanB.tanC=tanB+tanC
tanA−tanC=tanB+tanC
Or, tanA=tanB+2tanC
Therefore, option C is correct option i.e., tanA=tanB+2tanC
So, the correct answer is “Option C”.
Note : In solution part we cut off tan B from cot B because they both are inverse of each other
Or, tanB=cotB1
Similarly try to remember all the reciprocal relations and other relations between trigonometric functions.