Solveeit Logo

Question

Question: If A, B, C, are acute angles and \(\sin A = \cos A\) and \(\sin B\cos C + \cos B\sin C = \sin A\) th...

If A, B, C, are acute angles and sinA=cosA\sin A = \cos A and sinBcosC+cosBsinC=sinA\sin B\cos C + \cos B\sin C = \sin A then tan A is equal to ?
(A) tanB+tanC\tan B + \tan C
(B) 2(tanB+tanC)2(\tan B + \tan C)
(C) tanB+2tanC\tan B + 2\tan C
(D) 2tanB+tanC2\tan B + \tan C

Explanation

Solution

Hint : 1. Trigonometric ratios of (90θ)(90^\circ - \theta )
sin(90θ)=cosθ\sin (90^\circ - \theta ) = \cos \theta
cos(90θ)=sinθ\cos (90^\circ - \theta ) = \sin \theta
tan(90θ)=cotθ\tan (90^\circ - \theta ) = \cot \theta
sec(90θ)=cscθ\sec (90^\circ - \theta ) = \csc \theta
csc(90θ)=secθ\csc (90^\circ - \theta ) = \sec \theta
cot(90θ)=tanθ\cot (90^\circ - \theta ) = \tan \theta
2. Addition and subtraction of angles in sin
sin(A+B)=sinAcosB+cosAsinB\sin (A + B) = \sin A\cos B + \cos A\sin B
sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B

Complete step-by-step answer :
It is given that
1. sinA=cosB\sin A = \cos B
2. sinBcosC+cosBsinC=sinA\sin B\cos C + \cos B\sin C = sinA
Since sinA=cosB\sin A = \cos B
Then sinA=sin(π2B)\sin A = \sin \left( {\dfrac{\pi }{2} - B} \right) (sin(90θ)=cosθ)\left( {\because \sin (90^\circ - \theta ) = \cos \theta } \right)
So, A=π2BA = \dfrac{\pi }{2} - B
Or A+B=π2A + B = \dfrac{\pi }{2} .….(1)
Now, we know that
sin(a+b)=sina×cosb+cosa×sinb\sin (a + b) = \sin a \times \cos b + \cos a \times \sin b
So, by using this formula we can say that
The given equation
sinBcosC+cosBsinC=sin(B+C)=sinA\sin B\cos C + \cos B\sin C = \sin (B + C) = \sin A
Or, sin(B+C)=sinA\sin (B + C) = \sin A
Taking tangent both side
tan(B+C)=tanA\tan (B + C) = \tan A
or tanA=tan(B+C)\tan A = \tan (B + C)
tanA=tanB+tanC1tanBtanC\tan A = \dfrac{{\tan B + \tan C}}{{1 - \tan B\tan C}}
tanAtanAtanBtanC=tanB+tanC\tan A - \tan A\tan B\tan C = \tan B + \tan C
From equation (1) (A=π2B)\left( {A = \dfrac{\pi }{2} - B} \right)
tanAtan(π2B)tanBtanC=tanB+tanC\tan A - \tan \left( {\dfrac{\pi }{2} - B} \right)\tan B\tan C = \tan B + \tan C
tanAcotB.tanB.tanC=tanB+tanC\tan A - \cot B.\tan B.\tan C = \tan B + \tan C
tanAtanC=tanB+tanC\tan A - \tan C = \tan B + \tan C
Or, tanA=tanB+2tanC\tan A = \tan B + 2\tan C
Therefore, option C is correct option i.e., tanA=tanB+2tanC\tan A = \tan B + 2\tan C
So, the correct answer is “Option C”.

Note : In solution part we cut off tan B from cot B because they both are inverse of each other
Or, tanB=1cotB\tan B = \dfrac{1}{{\cot B}}
Similarly try to remember all the reciprocal relations and other relations between trigonometric functions.