Solveeit Logo

Question

Question: If a,b,c, and d are the smallest positive angles in ascending order of magnitude which have their si...

If a,b,c, and d are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then prove that 4sin(a2)+3sin(b2) + 2sin(c2)+sin(d2)=21+k4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) = 2\sqrt {1 + k} .

Explanation

Solution

First we will let the sines of a,b,c and d to be k and the write each angle in terms of the sin of a and put all the values in the given equation to get the value of k.

sin(π2x)=cosx sin(π+x)=sinx sin(3π2x)=cosx  \sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\\ \sin \left( {\pi + x} \right) = - \sin x \\\ \sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\\

Complete step by step solution:
The given equation is:
4sin(a2)+3sin(b2) + 2sin(c2)+sin(d2)=21+k................(1)4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) = 2\sqrt {1 + k} ................\left( 1 \right)
Since sines of all the angles is equal therefore,
Let sina=sinbsinc=sind=k\sin a = \sin b - \sin c = \sin d = k
Since a,b ,c and d are in ascending order therefore a is the smallest angle.
Also, since all the angles are positive angles implies the sines of these angles are also positive
And since we know sin is positive only in first and second quadrants.

Hence, each angle can be written in terms of angle a :
b=πab = \pi - a
Then, half of angle b is:
b2=π2a2\dfrac{b}{2} = \dfrac{\pi }{2} - \dfrac{a}{2}
Similarly,

c=2π+a c2=2π2+a2 c2=π+a2 d=3πa d2=3π2a2  c = 2\pi + a \\\ \dfrac{c}{2} = \dfrac{{2\pi }}{2} + \dfrac{a}{2} \\\ \dfrac{c}{2} = \pi + \dfrac{a}{2} \\\ d = 3\pi - a \\\ \dfrac{d}{2} = \dfrac{{3\pi }}{2} - \dfrac{a}{2} \\\

Now putting these values in Left hand side of equation1 we get:

LHS=4sin(a2)+3sin(b2) + 2sin(c2)+sin(d2) LHS=4sin(a2)+3sin(π2a2) + 2sin(π+a2)+sin(3π2a2)  {\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) \\\ {\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{\pi }{2} - \dfrac{a}{2}} \right){\text{ + }}2{\text{sin}}\left( {\pi + \dfrac{a}{2}} \right) + {\text{sin}}\left( {\dfrac{{3\pi }}{2} - \dfrac{a}{2}} \right) \\\

Now we know that,

sin(π2x)=cosx sin(π+x)=sinx sin(3π2x)=cosx  \sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\\ \sin \left( {\pi + x} \right) = - \sin x \\\ \sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\\

Applying these formulas in the above equation we get:

LHS=4sin(a2)+3cos(a2)2sin(a2)cos(a2) LHS=2sin(a2)+2cos(a2) LHS=2[sin(a2)+cos(a2)] LHS=2[(sin(a2)+cos(a2))2]  {\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3\cos \left( {\dfrac{a}{2}} \right) - 2\sin \left( {\dfrac{a}{2}} \right) - \cos \left( {\dfrac{a}{2}} \right) \\\ {\text{LHS}} = 2{\text{sin}}\left( {\dfrac{a}{2}} \right) + 2\cos \left( {\dfrac{a}{2}} \right) \\\ {\text{LHS}} = 2\left[ {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right] \\\ {\text{LHS}} = 2\left[ {\sqrt {{{\left( {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right)}^2}} } \right] \\\

Now applying the following formula:
(a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
We get:
LHS=2[sin2(a2)+cos2(a2)+2sin(a2)cos(a2)]{\text{LHS}} = 2\left[ {\sqrt {{{\sin }^2}\left( {\dfrac{a}{2}} \right) + {{\cos }^2}\left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{a}{2}} \right)\cos \left( {\dfrac{a}{2}} \right)} } \right]
Now applying following formulas:

sin2x+cos2x=1 sin2x=2sinxcosx  {\sin ^2}x + {\cos ^2}x = 1 \\\ \sin 2x = 2\sin x\cos x \\\

We get:

LHS=2[1+sin(2×a2)] LHS=2[1+sin(a)]  {\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( {2 \times \dfrac{a}{2}} \right)} } \right] \\\ {\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( a \right)} } \right] \\\

Now since therefore,
LHS=21+k{\text{LHS}} = 2\sqrt {1 + k}
And also, RHS=21+k{\text{RHS}} = 2\sqrt {1 + k}
Therefore, LHS=RHS{\text{LHS}} = {\text{RHS}}

Hence proved.

Note:
Since the angles, a,b,ca,b,c, and dd are in ascending order and the values of sines of these angles are equal, therefore, the values of these angles are to be taken in symmetry of sinusoidal graph such that the sines of the angles are positive.