Question
Question: If a, b, c and d are the sides of a quadrilateral, then the value of \(\frac { a ^ { 2 } + b ^ { 2 ...
If a, b, c and d are the sides of a quadrilateral, then the value of d2a2+b2+c2 is always greater than
A
1
B
1/2
C
1/3
D
1/4
Answer
1/3
Explanation
Solution
Since (a – b)2 + (b – c)2 + (c – a)2 ≥ 0
⇒ 2(a2 + b2 + c2) ≥ 2ab + 2bc + 2ca
⇒ 3 (a2 + b2 + c2) ≥ a2 + b2 + c2 + 2ab + 2bc + 2ca ⇒ 3 (a2 + b2 + c2) ≥ (a + b + c)2 > d2
⇒ 3 (a2 + b2 + c2) > d2 ⇒ d2a2+b2+c2>31